Home
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • ÄŒeÅ¡tina
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • LatvieÅ¡u
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2020
  5. Dielectric properties of Nephelium Lappaceum tropical wood
 
Options

Dielectric properties of Nephelium Lappaceum tropical wood

Journal
AIP Conference Proceedings
ISSN
0094243X
Date Issued
2020-03-25
Author(s)
Khor Shing Fhan
Universiti Malaysia Perlis
Cheng Ee Meng
Universiti Malaysia Perlis
Banjuraizah Johar
Universiti Malaysia Perlis
Nashrul Fazli Mohd Nasir
Universiti Malaysia Perlis
Zaizul M.A.
Wan Azani Wan Mustafa
Universiti Malaysia Perlis
Nik Noriman Zulkepli
Universiti Malaysia Perlis
Dahham O.S.
DOI
10.1063/5.0000038
Abstract
Dielectric properties of rambutan wood (Nephelium Lappaceum) were investigated in three anisotropic directions, namely miters-cut, cross-cut, and rib-cut. Dielectric constants and dielectric loss factors were measured at ambient temperatures by using an impedance analyzer. The dielectric constant decreased as frequency increased from 4 to 1 MHz. Among the wood specimens, the rib-cut direction has the lowest dielectric constant, while the cross-cut direction has the highest value. A dielectric dispersion occurred within frequencies 100 Hz to 10 kHz, which corresponding to a relaxation peak as observed on dielectric loss factor spectra. The relaxation peak value of the dielectric loss factors shifted towards higher frequencies in the sequence of rib-cut, miters-cut, and cross-cut specimen. Above 500 Hz, the cross-cut specimen has the highest value conductivity than others. Generally, these variations were subjected to the anatomical structure in the wood, such as parenchyma, ray cell, vessel cell, and fiber cell.
Funding(s)
Universiti Malaysia Perlis
File(s)
Research repository notification.pdf (4.4 MB)
google-scholar
Views
Downloads
  • About Us
  • Contact Us
  • Policies