Home
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • Čeština
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • Latviešu
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2020
  5. Effect of Solid-to-Liquid Ratio on Thin Fly Ash Geopolymer
 
Options

Effect of Solid-to-Liquid Ratio on Thin Fly Ash Geopolymer

Journal
IOP Conference Series: Materials Science and Engineering
ISSN
17578981
Date Issued
2020-03-18
Author(s)
Yong-Sing N.
Liew Yun Ming
Universiti Malaysia Perlis
Mohd. Mustafa Al Bakri Abdullah
Universiti Malaysia Perlis
Hui-Teng N.
Kamarudin Hussin
Universiti Malaysia Perlis
Heah Cheng Yong
Universiti Malaysia Perlis
Nurul Aida Mohd Mortar
Universiti Malaysia Perlis
Sandu A.V.
DOI
10.1088/1757-899X/743/1/012006
Abstract
The present work studies the effect of solid-to-liquid (S/L) ratio on the properties of thin fly ash-based geopolymer. The fly ash geopolymers with dimension of 160 mm × 40 mm × 10 mm were synthesised by using various S/L ratios (1.5, 2.0, 2.5, 3.0 and 3.2). The alkali activator was prepared by mixing 10M sodium hydroxide (NaOH) solution and sodium silicate (Na2SiO3) with the Na2SiO3/NaOH ratio of 2.5. The samples were cured at 60°C for 6 hours. The performance of fly ash geopolymers was evaluated by testing the flexural strength after 28 days. Results showed that the S/L ratio had an effect on flexural strength. The optimum flexural strength of 5.12 MPa was achieved by the fly ash geopolymer with S/L ratio of 2.5. However, the flexural strength dropped with higher S/L ratio as the workability decreases. However, further experimental lab work should be carried out as there is less knowledge in the study on the flexural strength of thin fly ash geopolymer.
Funding(s)
European Commission
File(s)
research repository notification.pdf (4.4 MB)
Views
1
Acquisition Date
Nov 19, 2024
View Details
google-scholar
Downloads
  • About Us
  • Contact Us
  • Policies