Home
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • Čeština
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • Latviešu
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2024
  5. Effects of Different Fiber Sizes in PLA/Carbon Fiber Composites on Mechanical Properties
 
Options

Effects of Different Fiber Sizes in PLA/Carbon Fiber Composites on Mechanical Properties

Journal
Archives of Metallurgy and Materials
ISSN
17333490
Date Issued
2024-01-01
Author(s)
Mohammad Firdaus Abu Hashim
Universiti Malaysia Perlis
Yusrina Mat Daud
Universiti Malaysia Perlis
Mohd. Mustafa Al Bakri Abdullah
Universiti Malaysia Perlis
Meor Ahmad Faris Meor Ahmad Tajudin
Universiti Malaysia Perlis
Rasidi M.S.M.
Che Mohd Ruzaidi Ghazali
Universiti Malaysia Perlis
Farah Farhana Zainal
Universiti Malaysia Perlis
Hasyim S.
Nazri N.N.M.
Garus S.
DOI
10.24425/amm.2024.149803
Abstract
This study assessed the morphology and chemical composition of coir coconut husk carbon fiber, as well as the impact of fiber diameters on the physical and mechanical properties of polylactic acid composites. Researchers are studying polylactide acid, a biodegradable material. This eco-friendly material’s excellent features, generated from sustainable and renewable sources, have drawn many people. Malaysia’s high coconut fiber output made coir husk a popular commodity. Coconut fibers are lignin, cellulose, and hemicellulose. Alkaline treatment eliminates hemicellulose, oil, wax, and other contaminants from coir fibers and removes lignin. Fourier Transform Infrared Spectroscopy and Scanning Electron Microscopy were used to examine the treated coconut fibers’ chemical modification analysis and morphology. Coconut coir husk was carbonized to produce carbon fiber using a furnace operated at 300°C for 2 hours. Fiber and polylactic acid were mixed in different fiber sizes (0, 53 µm, 75 µm, and 212 µm) via extrusion and injection processing techniques. The results showed that the alkali treatment reduced the hydroxyl (-OH) group and separated the area from the carbonyl (C=O) group of coconut coir husk, which changed the filler’s hydrophilicity. The fiber size of 212 µm was discovered to have the highest tensile and flexural strength values. According to testing, the modified material structure had a better surface fill-matrix bond. Thus, generalized fiber sizing and characterization methods were developed. Regardless of the matrix, this method can characterize natural fiber strength and interfacial shear strength of varied diameters and solid contents.
Subjects
  • Carbon fiber reinforc...

File(s)
Research repository notification.pdf (4.4 MB)
Views
1
Acquisition Date
Nov 19, 2024
View Details
google-scholar
Downloads
  • About Us
  • Contact Us
  • Policies