A double-chambered biocathode microbial fuel cell with carbon felt employed as electrodes was developed for wastewater treatment and bioelectricity generation simultaneously. The system was operated in fed-batch mode for over eight batches. The effect of circuit connections on organic and nitrate reduction was investigated. The maximum power density recorded was 21.97 mW/m2 at current density of 88.57 mA/m2. The Coulombic efficiency and internal resistance of the system were 5% and 100 Ω. Up to 89.9 ± 5.9% of chemical oxygen demand reduction efficiency achieved with an influent of 1123 ± 28 mg/L. There was no significant difference in the chemical oxygen demand reduction when system operated in either open or closed circuit. This study clearly showed that higher nitrate reduction efficiency obtained in closed circuit (74.7 ± 7.0%) due to bio-electrochemical denitrification compared to only 41.7% in the open circuit. The result also successfully demonstrated nitrate as terminal electron acceptor for the cathodic nitrate reduction.