Now showing 1 - 10 of 17
Thumbnail Image
Publication

The design of Mechatronics Manipulator for surgical purposes: approach and challenges

2006 , Zol Bahri Razali , Zahereel Ishwar Abdul Khalib

This paper discusses the preliminary study of improving the development of mechatronic manipulator for surgical aided system, i.e. in MIS procedures. Realizing the importance of robotic and computer technology for surgical field in Malaysia, a studyof the application of mechatronic in medical has been set foward. The intended outcon of the study is to develop a surgical assisted system that could increase the quality of surgical service performance. Therefore, the aim to this study is to investigate and develop a kinematics model with all the neccessary details to be used for mechanism analysis and preliminary control system design. The objective is to detemine the optical geometric configuration for the develop model. This information will be used for the detailed mechanical design and manufacture of the physical device. The final

Thumbnail Image
Publication

Kinematics analysis on hinges of robot arm gripper for harmful chemical handling

2017-09-26 , Zol Bahri Razali , Mohamed Mydin Hj M.Abdul Kader , Nurul Fahimah Mustafa , Mohd Hisham Daud

The development of manufacturing industry is booming the application of industrial robot, and proportional to the use of robot arm. Some of the purpose of robot arm gripper is to sort things and place to the proper place. And some of the things are harmful to human, such as harmful chemical. By using robot arm to do picking and placing, it is expected to replace human tasks, as well as to reduce human from the harmful job. The problem of the robot arm gripper, most likely the problem of hinge, thus the analysis on the hinges of robot arm gripper to prevent claw is essential. By using robot arm, instead of human, is labored to do the harmful tasks and unexpected accident happen, costs and expenses in handling injured employee due to the harmful chemicals can be minimized. Thus the objective of this project is to make a kinematics analysis on the hinges of the robot arm gripper. Suitable material such as steel structure has also been selected for the construction of this hinges. This material has properties associated with compressive strength, fire resistance, corrosion and has a shape that is easy to move. Solid Works and ANSYS software is used to create animated movement on the design model and to detect deficiencies in the hinges. Detail methodology is described in this paper.

Thumbnail Image
Publication

Self-assessing psychomotor skills using thinking-aloud technique via smartphone

2022 , Nor Syamina Sharifful Mizam , Zol Bahri Razali , Mohamed Mydin Hj M.Abdul Kader

This research aims to design and develop an automated device for self-assessing psychomotor skills without an instructor’s observation. The lab assessment usually needs an instructor to observe, measure, and analyze the student's skills. It consumed much time to monitor each student. The problem of assessing psychomotor skills in the laboratory can be solved using the latest technology. Thus, the design of an Automated Psychomotor Testing Kit will be used to measure student psychomotor skills via a smartphone. The result can be transmitted to the instructor's smartphone via the Blynk application using the Arduino Mega and Bluetooth module. For this research, 17 students of Robotic and Automation Technology (Treatment Group) and 19 volunteered students from other engineering technology programs (Control Group) participated. The detailed methodology is described in this paper. The results show that there is a significant difference in mean scores between the treatment and control groups. Thus, the researcher can conclude that changes in students' Psychomotor Skills (P.S.) resulting from laboratory classes are statistically significant and be measured.

No Thumbnail Available
Publication

Design and analysis on robotic arm for serving hazard container

2017-09-26 , Zol Bahri Razali , Mohamed Mydin Hj M.Abdul Kader , Khoo Zern Yi , Mohd Hisam Daud

This paper presents about design, analyses development and fabrication of robotic arm for sorting multi-material. The major problem that urges the initiation of the project is the fact that manufacturing industry is growing at relatively faster rate. Most of the company produce high load robotic arm. Less company creates light weight, and affordable robotic arm. As the result, light weight and affordable robot is developing to cover this issue. Plastic material was used to construct the body of the robotic arm, and an optical sensor was implemented to provide basic recognition of object to be carried. The robotic arm used five servomotors for overall operation; four for its joints, and one for the gripping mechanism. The gripper was designed and fabricated using Perspex due to the light weight and high strength of the material. The operation of the robotic arm was governed by Basic Stamp programming sequence and the device was expected to differentiate material and other objects based on reflective theory, and perform subsequent operations afterwards. The SolidWorks was used to model the detail design of the robotic arm, and to simulate the motion of the device.

Thumbnail Image
Publication

Reprogramming the articulated robotic arm for glass handling by using Arduino microcontroller

2017-09-26 , Zol Bahri Razali , Mohamed Mydin Hj M.Abdul Kader , Mohd Asmadi Akmal Kadir , Mohd Hisam Daud

The application of articulated robotic arm in industries is raised due to the expansion of using robot to replace human task, especially for the harmful tasks. However a few problems happen with the program use to schedule the arm, Thus the purpose of this project is to design, fabricate and integrate an articulated robotic arm by using Arduino microcontroller for handling glass sorting system. This project was designed to segregate glass and non-glass waste which would be pioneer step for recycling. This robotic arm has four servo motors to operate as a whole; three for the body and one for holding mechanism. This intelligent system is controlled by Arduino microcontroller and build with optical sensor to provide the distinguish objects that will be handled. Solidworks model was used to produce the detail design of the robotic arm and make the mechanical properties analysis by using a CAD software.

Thumbnail Image
Publication

Develop portable blood analyzer based on temperature and quantity level

2020 , Muhammad Amar Farhan Sukemi , Wan Azani Wan Mustafa , Muhammad Zaid Aihsan , Zol Bahri Razali , Syed Akhmal Syed Jamalil , Syahrul Affandi Saidi

This technical paper presents a developing portable blood analyzer for monitoring of human blood sample. Perseverance of blood sample in hospitals is important in order to obtain a great quality of blood and therefore it able to determining the human type of disease. This is a life-threatening early step in most medical applications fields such as diagnosis, treatment and medical research. The proposed system consists of three main parts. In the first part, the use of convenient and handy device to deal with the problem of incorrect temperature value and inadequate quantity of blood sample. Most of previous human hospitality services show a fail to handle and properly in time to take human blood sample for diagnosis in a schedule time frame such as not punctual in taking blood sample from a patient in three different times in one day. The consequences is that these blood sample are not in perfect quality for a correct estimation of the human disease towards a pathology unit. The proposed method is a device that uses infrared temperature system and non-contact blood sample quantity detection. In the second part is by combining those two approaches to single programmable electronic modules that are used to minimize the size of the portable device in the resulting techniques to improve the functionality. The third part is accomplished by using a modern technique to produce an interface to provide the value of human blood sample and shows it on display for monitoring purposes. The programmable coding has been test in several different types of sensors and physical part. The experimental results show that this method able to integrate both requirement of human blood sample perseverance with a contactless method towards a blood tube, providing the output value of quality characteristic in a display and making it well-suited for a convenient practical application system. The experimental results in real time applications shows the effectiveness, reliable and efficiency in the proposed approach which able to almost accurately detect and monitor the human blood sample with the ability to detect different types of people gender and blood type. The proposed coding system can be executed at more precise time scheduling which is better than real life human monitoring system.

Thumbnail Image
Publication

Think-aloud Technique in Assessing Practical Experience: A Pilot Study

2020-12-18 , Zol Bahri Razali , Affendi N.S.S.R. , Mohamed Mydin Hj M.Abdul Kader , Daud M.H.

The learning domains such as cognitive, affective and psychomotor for Engineering Technology programs should be identified and valued. The acquisition of hands-on experience in workplace settings and laboratory classes is just as important as explicit technical knowledge, and should be measured in psychomotor domain. However, the explicit knowledge is valued in engineering technology education. Furthermore, practically all assessments measure cognitive value. This implicit devaluation of hands-on experience could significantly impair engineering technology students' ability to acquire and value practical skills. Therefore, developing a new model to include effective assessment in psychomotor domain could be one way to overcome this problem. Thus, the aim of this project is to find ways to measure changes in hands-on experience in engineering laboratory classes. The second aim is to test the relationship between hands-on experiences acquired in laboratory classes with the ability to diagnose simple experiment faults in laboratory arrangements. The method of think-aloud is used in the research where the finding of students' attainment is compared to experts' acquisition. The results show that the value of psychomotor domain in laboratory classes via hands-on experience can be assessed and valued between two groups of students which is experiment and control group. Methodologies and detail results for this research are described in this project.

Thumbnail Image
Publication

Design and analysis on sorting blade for automated size-based sorting device

2017-09-26 , Zol Bahri Razali , Mohamed Mydin Hj M.Abdul Kader , Yasser Suhaimi Samsudin , Mohd Hisam Daud

Nowadays rubbish separating or recycling is a main problem of nation, where peoples dumped their rubbish into dumpsite without caring the value of the rubbish if it can be recycled and reused. Thus the author proposed an automated segregating device, purposely to teach people to separate their rubbish and value the rubbish that can be reused. The automated size-based mechanical segregating device provides significant improvements in terms of efficiency and consistency in this segregating process. This device is designed to make recycling easier, user friendly, in the hope that more people will take responsibility if it is less of an expense of time and effort. This paper discussed about redesign a blade for the sorting device which is to develop an efficient automated mechanical sorting device for the similar material but in different size. The machine is able to identify the size of waste and it depends to the coil inside the container to separate it out. The detail design and methodology is described in detail in this paper.

Thumbnail Image
Publication

Electronic Nose Testing for Confined Space Application Utilizes Principal Component Analysis and Support Vector Machine

2020-12-18 , Muhammad Aizat Abu Bakar , Abu Hassan Abdullah , Wan Azani Wan Mustafa , Zol Bahri Razali , Syahrul Affandi Saidi , Mohamed Mydin Hj M.Abdul Kader , Aman M.N.S.B.S.

A confined space has a limited space for entry and exit but it is large enough for workers to enter and perform work inside. It is not designed for continuous occupancy because it can contribute atmospheric hazards accidents that threaten the worker safety and industry progress. In this work, we reported the testing an instrument to assist workers for atmosphere testing during pre-entry. An electronic nose (e-nose) using specific sensor arrays is the integration between hardware and software that able to sense different concentrations of gases in an air sample using pattern recognition techniques. The instrument utilizes multivariate statistical analysis which is Principal Component Analysis (PCA) for discriminate the different concentrations of gases and the Support Vector Machine (SVM) to classify the acquired data from the air sample. The instrument was successfully tested using diesel, gasoline, petrol and thinner. The results show that the instrument able to discriminate an air sample using PCA with total variation for 99.94%, while the classifier success rate for SVM indicates at 98.21% for train performance and 95.83% for test performance. This will contribute significantly to acquiring a new and alternative method of using the instrument for monitoring the atmospheric hazards in confined space to ensure the safety of workers during work progress in a confined space.

Thumbnail Image
Publication

Develop Portable Blood Analyzer Based on Temperature and Quantity Level

2020-12-18 , Farhan Sukemi M.A. , Wan Azani Wan Mustafa , Aihsan M.Z. , Zol Bahri Razali , Akhmal S. , Saidi S.A.

This technical paper presents a developing portable blood analyzer for monitoring of human blood sample. Perseverance of blood sample in hospitals is important in order to obtain a great quality of blood and therefore it able to determining the human type of disease. This is a life-threatening early step in most medical applications fields such as diagnosis, treatment and medical research. The proposed system consists of three main parts. In the first part, the use of convenient and handy device to deal with the problem of incorrect temperature value and inadequate quantity of blood sample. Most of previous human hospitality services show a fail to handle and properly in time to take human blood sample for diagnosis in a schedule time frame such as not punctual in taking blood sample from a patient in three different times in one day. The consequences is that these blood sample are not in perfect quality for a correct estimation of the human disease towards a pathology unit. The proposed method is a device that uses infrared temperature system and non-contact blood sample quantity detection. In the second part is by combining those two approaches to single programmable electronic modules that are used to minimize the size of the portable device in the resulting techniques to improve the functionality. The third part is accomplished by using a modern technique to produce an interface to provide the value of human blood sample and shows it on display for monitoring purposes. The programmable coding has been test in several different types of sensors and physical part. The experimental results show that this method able to integrate both requirement of human blood sample perseverance with a contactless method towards a blood tube, providing the output value of quality characteristic in a display and making it well-suited for a convenient practical application system. The experimental results in real time applications shows the effectiveness, reliable and efficiency in the proposed approach which able to almost accurately detect and monitor the human blood sample with the ability to detect different types of people gender and blood type. The proposed coding system can be executed at more precise time scheduling which is better than real life human monitoring system.