Now showing 1 - 3 of 3
  • Publication
    Mechanical performance, microstructure, and porosity evolution of fly ash geopolymer after ten years of curing age
    ( 2023)
    Ikmal Hakem A. Aziz
    ;
    ; ; ; ;
    Jitrin Chaiprapa
    ;
    Catleya Rojviriya
    ;
    Petrica Vizureanu
    ;
    Andrei Victor Sandu
    ;
    ; ;
    This paper elucidates the mechanical performance, microstructure, and porosity evolution of fly ash geopolymer after 10 years of curing age. Given their wide range of applications, understanding the microstructure of geopolymers is critical for their long-term use. The outcome of fly ash geopolymer on mechanical performance and microstructural characteristics was compared between 28 days of curing (FA28D) and after 10 years of curing age (FA10Y) at similar mixing designs. The results of this work reveal that the FA10Y has a beneficial effect on strength development and denser microstructure compared to FA28D. The total porosity of FA10Y was also lower than FA28D due to the anorthite formation resulting in the compacted matrix. After 10 years of curing age, the 3D pore distribution showed a considerable decrease in the range of 5–30 µm with the formation of isolated and intergranular holes.
  • Publication
    Artificial lightweight aggregates made from pozzolanic material: A review on the method, physical and mechanical properties, thermal and microstructure
    ( 2022)
    Dickson Ling Chuan Hao
    ;
    ;
    Marwan Kheimi
    ;
    ; ;
    Dumitru Doru Burduhos Nergis
    ;
    Hamzah Fansuri
    ;
    Ratna Ediati
    ;
    Rosnita Mohamed
    ;
    As the demand for nonrenewable natural resources, such as aggregate, is increasing worldwide, new production of artificial aggregate should be developed. Artificial lightweight aggregate can bring advantages to the construction field due to its lower density, thus reducing the dead load applied to the structural elements. In addition, application of artificial lightweight aggregate in lightweight concrete will produce lower thermal conductivity. However, the production of artificial lightweight aggregate is still limited. Production of artificial lightweight aggregate incorporating waste materials or pozzolanic materials is advantageous and beneficial in terms of being environmentally friendly, as well as lowering carbon dioxide emissions. Moreover, additives, such as geopolymer, have been introduced as one of the alternative construction materials that have been proven to have excellent properties. Thus, this paper will review the production of artificial lightweight aggregate through various methods, including sintering, cold bonding, and autoclaving. The significant properties of artificial lightweight aggregate, including physical and mechanical properties, such as water absorption, crushing strength, and impact value, are reviewed. The properties of concrete, including thermal properties, that utilized artificial lightweight aggregate were also briefly reviewed to highlight the advantages of artificial lightweight aggregate.
  • Publication
    Effect of Rice Straw Ash (RSA) as partially replacement of cement toward fire resistance of self-compacting concrete
    ( 2022)
    Yi Qin Chin
    ;
    ; ; ; ;
    Sebastian Garus
    ;
    Marcin Nabiałek
    ;
    Warid Wazien Ahmad Zailani
    ;
    Khairil Azman Masri
    ;
    Andrei Victor Sandu
    ;
    Agata Åšliwa
    Malaysia’s construction industry is experiencing rapid growth, translating into increased demand for cement. However, cement production pollutes the air to the detriment of the climate via CO2 emission, making research into a cementitious replacement in concrete a necessity. This paper details an experimental study of self-compacting concrete (SCC) with partial replacement of cement by rice straw ash (RSA), which is expected to result in environmental preservation due to the green materials being used in cement production. The physicomechanical properties of the SCC with RSA replacement were determined via its compressive strength, water absorption, self-workability, and fire resistance (residual strength after exposure to high temperatures). The proportion of RSA replacement used were 0%, 5%, 10%, 15%, 20%, and 25%, and all passed the slump flow test, except the 20% and 25% samples. The SCC samples with 15% of RSA replacement reported the highest compressive strength at 7 and 28 curing days and the highest residual strength post-exposure to high temperatures. The lowest percentage of water absorption was reported by the 15% of RSA replacement, with a density of 2370 kg/m3