Now showing 1 - 6 of 6
  • Publication
    Gasification char residues management: Assessing the characteristics for adsorption application
    ( 2023-09-01) ;
    Ahmad M.A.
    ;
    ;
    Ken K.
    Due to the world-wide energy crisis and economic issues, biomass has become a resource of global interest as an alternative to activated carbon (AC) produced using non-renewable feedstock (i.e. coal-based). The production of AC from biomass has been determined to be sustainable owing to the abundance of biomass resources on Earth. Biomass gasification has significantly gained market interest and was predicted to reach a value of USD 126 billion by 2023. A critical concern for the existing commercial gasification plants is the handling of char residues, which represent approximately 10% of the initial feedstock mass and are presently treated as waste. The conversion of these chars into AC that can be used for adsorption applications is a possible alternative. This review article focuses on evaluating the characteristic of the gasification char (GC) that is used for adsorption processes. The current AC production method was briefly reviewed. In addition, recent studies on adsorption using GC were explored and summarised.
  • Publication
    Microplastics and nanoplastics: Recent literature studies and patents on their removal from aqueous environment
    ( 2022-03-01)
    Muhammad Adli Hanif
    ;
    ; ; ; ;
    Jalil A.A.
    The presence of microplastics (MP) and nanoplastics (NP) in the environment poses significant hazards towards microorganisms, humans, animals and plants. This paper is focused on recent literature studies and patents discussing the removal process of these plastic pollutants. Microplastics and nanoplastics can be quantified by counting, weighing, absorbance and turbidity and can be further analyzed using scanning electron microscopy (SEM), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, surface-enhanced Raman spectroscopy and Raman tweezers. Mitigation methods reported are categorized depending on the removal characteristics: (i) Filtration and separation method: Filtration and separation, electrospun nanofiber membrane, constructed wetlands; (ii) Capture and surface attachment method: coagulation, flocculation and sedimentation (CFS), electrocoagulation, adsorption, magnetization, micromachines, superhydrophobic materials and microorganism aggregation; and (iii) Degradation method: photocatalytic degradation, microorganism degradation and thermal degradation; where removal efficiency between 58 and 100% were reported. As these methods are significantly distinctive, the parameters which affect the MP/NP removal performance e.g., pH, type of plastics, presence of interfering chemicals or ions, surface charges etc. are also discussed. 42 granted international patents related to microplastics and nanoplastics removal are also reviewed where the majority of these patents are focused on separation or filtration devices. These devices are efficient for microplastics up to 20 μm but may be ineffective for nanoplastics or fibrous plastics. Several patents were found to focus on methods similar to literature studies e.g., magnetization, CFS, biofilm and microorganism aggregation; with the addition of another method: thermal degradation.
      1  10
  • Publication
    Microplastics in facial cleanser: extraction, identification, potential toxicity, and continuous-flow removal using agricultural waste–based biochar
    Microplastic (MP) is an emerging contaminant of concern due to its ubiquitous quantity in the environment, small size, and potential toxicity due to strong affinity towards other contaminants. In this work, MP particles (5–300 μm) were extracted from a commercial facial cleanser and determined to be irregular polyethylene (PE) microbeads based on characterization with field emission scanning electron microscopy (FESEM) and Raman spectroscopy. The potential of extracted MP acting as toxic pollutants’ vector was analyzed via adsorption of methylene blue and methyl orange dye where significant dye uptake was observed. Synthetic wastewater containing the extracted MP was subjected to a continuous-flow column study using palm kernel shell and coconut shell biochar as the filter/adsorbent media. The prepared biochar was characterized via proximate and ultimate analysis, FESEM, contact angle measurement, atomic force microscopy (AFM), and Fourier transform infrared (FTIR) spectroscopy to investigate the role of the biochar properties in MP removal. MP removal performance was determined by measuring the turbidity and weighing the dry mass of particles remaining in the effluent following treatment. Promising results were obtained from the study with highest removal of MP (96.65%) attained through palm kernel shell biochar with particle size of 0.6–1.18 mm and continuous-flow column size of 20 mm. Graphical abstract: [Figure not available: see fulltext.].
      1
  • Publication
    The Grease Formulation Using Waste Substances from Palm Oil Refinery and Other Industrial Wastes: A Review
    ( 2023-08-01)
    Hairunnaja M.A.
    ;
    Aziz M.A.A.
    ;
    Bashari N.A.F.
    ;
    Arifin M.A.
    ;
    Nedumaran N.
    ;
    ;
    Many applications use Spent Bleaching Earth (SBE) despite being considered hazardous waste from the palm oil refinery process. Its production increases yearly, similar to waste cooking oil (WCO). The SBE is known as a thickener in grease formulation. The same goes for red gypsum, waste motor oil, stearic acid, and lithium hydroxide monohydrate. They are all considered thickeners but have different durability in protecting base oil in grease. Then, previous studies revealed their performances with side effects detection against the environment and human bodies. Cooking oil is a heat transfer medium for serving foods with higher amounts of unsaturated fatty acids. The number of fatty acids might change after cooking oil consumption and become highly demanded due to the chemical properties of density, viscosity and fatty acids. Nowadays, people lack awareness of the importance of recycling palm oil waste. They intend to dispose of it instead of recycling it for sustainable energy resources. Therefore, this paper will discuss the grease formulation, contaminant available in WCO, its treatment, issues regarding different thickener consumption, treatment against Spent Bleaching Earth (SBE), and propose the safe thickener and additives for future intakes. This study found that adding Fume Silica (F.S.) as a thickener and Molybdenum Disulfide (MoS2) enhanced the grease stability. Further treatment against SBE (remove residue oil) and WCO (metal elements, undesired impurities and water content) is necessary for providing good quality formulated grease.
      3  13
  • Publication
    Microplastics and nanoplastics: Recent literature studies and patents on their removal from aqueous environment
    The presence of microplastics (MP) and nanoplastics (NP) in the environment poses significant hazards towards microorganisms, humans, animals and plants. This paper is focused on recent literature studies and patents discussing the removal process of these plastic pollutants. Microplastics and nanoplastics can be quantified by counting, weighing, absorbance and turbidity and can be further analyzed using scanning electron microscopy (SEM), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, surface-enhanced Raman spectroscopy and Raman tweezers. Mitigation methods reported are categorized depending on the removal characteristics: (i) Filtration and separation method: Filtration and separation, electrospun nanofiber membrane, constructed wetlands; (ii) Capture and surface attachment method: coagulation, flocculation and sedimentation (CFS), electrocoagulation, adsorption, magnetization, micromachines, superhydrophobic materials and microorganism aggregation; and (iii) Degradation method: photocatalytic degradation, microorganism degradation and thermal degradation; where removal efficiency between 58 and 100% were reported. As these methods are significantly distinctive, the parameters which affect the MP/NP removal performance e.g., pH, type of plastics, presence of interfering chemicals or ions, surface charges etc. are also discussed. 42 granted international patents related to microplastics and nanoplastics removal are also reviewed where the majority of these patents are focused on separation or filtration devices. These devices are efficient for microplastics up to 20 μm but may be ineffective for nanoplastics or fibrous plastics. Several patents were found to focus on methods similar to literature studies e.g., magnetization, CFS, biofilm and microorganism aggregation; with the addition of another method: thermal degradation.
      15  1
  • Publication
    Parametric study on producing Fused Deposition Modelling filament made of recovered carbon black reinforced Acrylonitrile Butadiene Styrene plastics
    ( 2023-01-01)
    Saad M.F.
    ;
    ;
    Fooi C.C.
    ;
    Quan C.R.
    ;
    Hadi M.H.J.A.
    ;
    ;
    Osman A.F.
    Additive manufacturing is a process that makes three-dimensional object layer by layer. There are many different types of 3D printer and the most commonly used is Fused Deposition Modeling (FDM). There is a need for a new material for Acrylonitrile Butadiene Styrene (ABS) FDM filament to improve filament strength and reduce the usage of plastics. From literature, there are limited studies available on making 3D printer filament reinforced by recycled carbon black. The limitation hinders the potential of using this material in new applications. In this study, recycled carbon black powder (rCB) was added as a filler reinforcement to enhance the properties of ABS. Parameters considered in this study were percentage of filler weight loading and filler size. Tests and characterisation used in this study were tensile test, thickness test, surface roughness test, scanning electron microscopy, density test and water absorption test. There were improvements in mechanical properties such as tensile test and elasticity of the filament compared to the pure ABS plastic. The higher filler percentage can improve the elasticity of filament and lower filler percentage can improve the strength of the filament. The findings could help in improving marketability status and commercialisation potential of rCB reinforced ABS filament for FDM applications.
      2  13