Home
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • ÄŒeÅ¡tina
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • LatvieÅ¡u
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2023
  5. Parametric study on producing Fused Deposition Modelling filament made of recovered carbon black reinforced Acrylonitrile Butadiene Styrene plastics
 
Options

Parametric study on producing Fused Deposition Modelling filament made of recovered carbon black reinforced Acrylonitrile Butadiene Styrene plastics

Journal
Journal of Physics: Conference Series
ISSN
17426588
Date Issued
2023-01-01
Author(s)
Saad M.F.
Norshah Afizi Shuaib
Universiti Malaysia Perlis
Fooi C.C.
Quan C.R.
Hadi M.H.J.A.
Umi Fazara Md Ali
Universiti Malaysia Perlis
Osman A.F.
DOI
10.1088/1742-6596/2643/1/012011
Abstract
Additive manufacturing is a process that makes three-dimensional object layer by layer. There are many different types of 3D printer and the most commonly used is Fused Deposition Modeling (FDM). There is a need for a new material for Acrylonitrile Butadiene Styrene (ABS) FDM filament to improve filament strength and reduce the usage of plastics. From literature, there are limited studies available on making 3D printer filament reinforced by recycled carbon black. The limitation hinders the potential of using this material in new applications. In this study, recycled carbon black powder (rCB) was added as a filler reinforcement to enhance the properties of ABS. Parameters considered in this study were percentage of filler weight loading and filler size. Tests and characterisation used in this study were tensile test, thickness test, surface roughness test, scanning electron microscopy, density test and water absorption test. There were improvements in mechanical properties such as tensile test and elasticity of the filament compared to the pure ABS plastic. The higher filler percentage can improve the elasticity of filament and lower filler percentage can improve the strength of the filament. The findings could help in improving marketability status and commercialisation potential of rCB reinforced ABS filament for FDM applications.
Funding(s)
Ministry of Higher Education, Malaysia
File(s)
Research repository notification.pdf (4.4 MB)
google-scholar
Views
Downloads
  • About Us
  • Contact Us
  • Policies