Now showing 1 - 6 of 6
  • Publication
    Study on characterization of bio-oil derived from sugarcane bagasse (Saccharum barberi) for application as biofuel
    ( 2022-04-01)
    Ahmad S.F.K.
    ;
    ;
    Isa K.M.
    ;
    Lignocellulosic biomass especially, sugarcane bagasse Saccharum barberi sp., appears to be a more suitable material for partial substitution of transport fuel (diesel) than Saccharum officinarum sp., due to its structural similarity to transport fuel (diesel). Besides that, less research has been implemented on this type of species. Bio-oil can be implemented as biodiesel by processing it further using chemical reactions such as hydrodeoxygenation and cracking with zeolite catalyst. Hence, the purpose of this study is to determine the compatibility of pyrolytic bio-oil produced from Saccharum barberi sp. in comparison with S. officinarum sp. for use as transport fuel (diesel) in automotive applications. This purpose can be accomplished by comparing the oil’s bio-physiochemical properties for both species. The experiment is conducted on a bench-scale on which bio-oil of Saccharum barberi sp. is secured from the catalytic pyrolysis process at a temperature of 500°C and heating rate of 50°C/min with the addition of ZSM-Zeolite catalyst. Thermogravimetric analysis of Saccharum barberi sp. reveals that cellulose is more reactive than lignin, evidenced by the high percentage of weight loss at temperatures ranging from 251°C to 390°C. The high contents of carbon (40.7%) and hydrogen (6.50%), as well as slight traces of sulphur (0.08%) and nitrogen (0.85%), in bio-oil (Saccharum barberi sp.) indicate that it is conceivable to be partially used for replacement in biofuel production. Overall physiochemical properties reveal that Saccharum barberi sp. shows more potential than S. officinarum sp. Gas chromatography–mass spectrometry analysis reveals that bio-oil consists of high amounts of aromatic hydrocarbon (26.2%), phenol (14.8%) and furfural (13.0%) in comparison to S. officinarum sp.
  • Publication
    Advancement in recycling waste tire activated carbon to potential adsorbents
    ( 2022-12-01) ;
    Hussin F.
    ;
    ;
    Aroua M.K.
    ;
    Khamidun M.H.
    ;
    Jusoh N.
    ;
    ;
    Ahmad S.F.K.
    Waste tires have been identified as one of the contributors to environmental problems and the issue of inadequate landfill spaces. The lack of consistent and systematic approaches such as specific regulations/laws or mechanisms of waste management to waste tires, limited application of technology for recycling waste tires and lack of awareness on the impacts of waste tires problem, make waste tires a source of environmental pollution. Various researches have been conducted on recycling waste tires into polymer bends, and materials to harden concretes, fuels and adsorbent. Researchers suggested that pyrolysis is the current trend of recycling waste tire to harvest the saleable pyrolysis oil and the recycled carbon black. Therefore, this review attempts to compile relevant knowledge about the potential of adsorbent derived from waste tires to be applied in the removal of various types of pollutants like heavy metals, organic pollutants, dye and air/gaseous pollutant. Studies were carried out on revealing the properties and the characteristics of activated carbon derived from waste tire as effective adsorbent which influence the application performance at liquid or gas phase. In addition, the challenges in the production of activated carbon derived from waste tire were discussed.
  • Publication
    Evaluation of phenol formaldehyde resin synthesized from sugarcane bagasse bio-oil under optimized parameters
    Bio-oil from biomass is considered as a potential substitute to partially replace phenol in the preparation of phenol formaldehyde resin as replacement to the commercial phenol which high in cost. However, the percentages of bio-oil substitutions need to be determined to ensure that the performance is good as the commercial ones. The aim of this research is to identify the optimum conditions for synthesizing phenol formaldehyde resin (PF) and determines the percentages of bio-oil substitutions by manipulating the synthesizing variables such as formaldehyde to phenol (F/P) catalyst ratio (NaOH/P), catalyst ratio and duration using one-factor-at-time method. The effect of each manipulated variables on shear strength was compared to the Chinese National Standard for PF resin shear strength. Bio-based phenolic resins are synthesized using the optimum conditions by replacing 10, 20, 30 and 40% of phenol with bio-oil from the pyrolysis of sugarcane bagasse. The results obtained shown that the optimum conditions to synthesize phenol formaldehyde resin is at F/P molar ratio of 2.0, catalyst ratio of 0.6 and duration of 3 hour. The results of bio-based phenolic resins bonding performance shows that substitution percentage of bio-oil up to 20% at most gives good performance compared to the pure PF resin.
  • Publication
    Oil palm waste-derived reduced graphene oxide (rGO) for dynamic adsorption of dye in a fixed-bed system
    ( 2024-01-01)
    Mohd Ali Jinnah S.N.H.
    ;
    ; ; ; ;
    Mohamed Zuki F.
    This study focuses on investigating the dynamic adsorption of Rhodamine B (RhB) from reduced graphene oxide (rGO) derived from oil palm waste. The synthesis of rGO from palm kernel shell (PKS) was achieved through double oxidation and carbonization method, resulting in a yield of 73.5 wt%. The reduction of oxygen-containing functionalities process using PKS was confirmed by FTIR spectroscopy, microscopic evaluation, and X-ray diffraction analyses. Laboratory-scale fixed-bed experiments were conducted with various process parameters. Both PKS and rGO were used as adsorbents, and a comparison was made based on breakthrough curve analysis, adsorption capacity and percentage removal of dye. The adsorption kinetics of RhB on PKS and rGO were best described by the non-linear Yoon-Nelson model, with a high adsorption capacity of 88.32 mg/g and 195.24 mg/g respectively. Using both PKS and rGO, the maximum adsorption capacity was observed when using 10 cm bed depth column, inlet dye concentration of 5 mg/L, flow rate of 12 mL/min and pH of 7. PKS exhibited good dye removal with an efficiency of 66.54%. Meanwhile, the exothermic behavior highlighted the potential of utilizing rGO for maximum dye removal, achieving an efficiency of 90.35%. This study justifies rGO as a cost-effective superior dye removal adsorbent, providing new prospect for large-scale dye removal.
  • Publication
    Bio-removal of lead (II) ions under optimal condition by zinc chloride-impregnated activated carbon from brown alga
    ( 2024-01-01)
    Osman N.S.
    ;
    ; ;
    Hussin F.
    ;
    Aroua M.K.
    Sargassum sp., a brown alga in the division of macroalgae was evaluated for its ability to synthesis macroalgal-based activated carbon and remove lead (II) ions from synthetic aqueous solution. The sargassum activated carbon (SAC) was prepared by chemical activation impregnated with zinc chloride followed by carbonization. The surface morphology and functional group of untreated Sargassum sp. powder (SAP) and activated Sargassum sp. carbon (SAC) were scanned and presented with the Scanning Electron Microscope (SEM) and Fourier Transform Infrared spectroscopy (FTIR). Batch studies were conducted to explore maximum removal efficiency in term of pH, initial lead (II) ions concentration, contact time, adsorbent dosage, and temperature for the efficient adsorption. The maximum lead (II) ions uptake capacity for SAC was obtained at pH 5, initial lead (II) ions concentration at 25 mg/L, operation time of 60 min, adsorbent dosage of 0.1 g and temperature of 40 °C. The adsorption data were well-fitted by the Freundlich isotherm model, with an R2 value of 1.000, indicating a good fit. The kinetic study revealed that the adsorption of lead (II) ions followed a pseudo-first-order kinetic model, with an R2 value of 0.9746. This study validates the use of brown algae in the treatment of heavy metal contamination in wastewater.
  • Publication
    Advancement in recycling waste tire activated carbon to potential adsorbents
    ( 2022-12-01) ;
    Hussin F.
    ;
    ;
    Aroua M.K.
    ;
    Khamidun M.H.
    ;
    Jusoh N.
    ;
    ;
    Syahirah Faraheen Kabir Ahmad
    Waste tires have been identified as one of the contributors to environmental problems and the issue of inadequate landfill spaces. The lack of consistent and systematic approaches such as specific regulations/laws or mechanisms of waste management to waste tires, limited application of technology for recycling waste tires and lack of awareness on the impacts of waste tires problem, make waste tires a source of environmental pollution. Various researches have been conducted on recycling waste tires into polymer bends, and materials to harden concretes, fuels and adsorbent. Researchers suggested that pyrolysis is the current trend of recycling waste tire to harvest the saleable pyrolysis oil and the recycled carbon black. Therefore, this review attempts to compile relevant knowledge about the potential of adsorbent derived from waste tires to be applied in the removal of various types of pollutants like heavy metals, organic pollutants, dye and air/gaseous pollutant. Studies were carried out on revealing the properties and the characteristics of activated carbon derived from waste tire as effective adsorbent which influence the application performance at liquid or gas phase. In addition, the challenges in the production of activated carbon derived from waste tire were discussed.
      1