Now showing 1 - 3 of 3
  • Publication
    Electrically tunable Left-Handed textile metamaterial for microwave applications
    ( 2021)
    Kabir Hossain
    ;
    ; ;
    Ping Jack Soh
    ;
    Mohd Haizal Jamaluddin
    ;
    Samir Salem Al-Bawri
    ;
    ;
    R. Badlishah, Ahmad
    ;
    ; ;
    Nitin Saluja
    An electrically tunable, textile-based metamaterial (MTM) is presented in this work. The proposed MTM unit cell consists of a decagonal-shaped split-ring resonator and a slotted ground plane integrated with RF varactor diodes. The characteristics of the proposed MTM were first studied independently using a single unit cell, prior to different array combinations consisting of 1 × 2, 2 × 1, and 2 × 2 unit cells. Experimental validation was conducted for the fabricated 2 × 2 unit cell array format. The proposed tunable MTM array exhibits tunable left-handed characteristics for both simulation and measurement from 2.71 to 5.51 GHz and provides a tunable transmission coefficient of the MTM. Besides the left-handed properties within the frequency of interest (from 1 to 15 GHz), the proposed MTM also exhibits negative permittivity and permeability from 8.54 to 10.82 GHz and from 10.6 to 13.78 GHz, respectively. The proposed tunable MTM could operate in a dynamic mode using a feedback system for different microwave wearable applications.
  • Publication
    A reconfigurable WiMAX antenna for directional and broadside application
    ( 2013-04-25) ;
    M. F. Jamlos
    ;
    M. R. Kamarudin
    ;
    A novel reconfigurable compact patch array antenna for directional and broadside application is proposed. The presented antenna has successfully been able to function for directional beam at 320° or 35° and divisive broadside beam at 43° and 330°. This is realized in the unique form of aperture coupled spiral feeding technique and positioning of the radiating elements at 0°, 90,° and 180°. The switchable feature is effectively performed by the configuration of three PIN diodes. All PIN diodes are positioned at the specific location of the aperture coupled structure. It is discovered in simulation that the switches can be represented with a copper strip line or touchstone (TS) block . The proposed antenna design operates at 2.37 GHz to 2.41 GHz and has a maximum gain of 6.4 dB and efficiency of 85.97%. Such antenna produces a broadside HPBW with a wider bandwidth covering from −90° to 90° compared to the normal microstrip antenna which could only provide HPBW of −50° to 50°. Moreover, the proposed antenna has small physical dimension of 100 mm by 100 mm. The simulation and measurement results have successfully exhibited the idea of the presented antenna performance. Therefore, the antenna is sufficiently competent in the smart WiMAX antenna application.
      9  9
  • Publication
    A Fuzzy-Based Angle-of-Arrival Estimation System (AES) using Radiation Pattern Reconfigurable (RPR) antenna and modified gaussian membership function
    ( 2019) ; ; ;
    R. Badlishah, Ahmad
    ;
    Mohd Haizal Jamaluddin
    ;
    Muhammad Ramlee Kamarudin
    ;
    ;
    L. Murukesan Loganathan
    ;
    Soh Ping Jack
    Angle-of-arrival (AOA) estimation is an important factor in various wireless sensing applications, especially localization systems. This paper proposes a new type of AOA estimation sensor node, known as AOA-estimation system (AES) where the received signal strength indication (RSSI) from multiple radiation pattern reconfigurable (RPR) antennas are used to calculate the AOA. In the proposed framework, three sets of RPR antennas have been used to provide a coverage of 15 regions of radiation patterns at different angles. The salient feature of this RPR-based AOA estimation is the use of Fuzzy Inferences System (FIS) to further enhance the number of estimation points. The introduction of a modified FIS membership function (MF) based on Gaussian function resulted in an improved 85% FIS aggregation percentage between the fuzzy input and output. This later resulted in a low AOA error (of less than 5%) and root-mean- square error (of less than 8â—¦ ).
      1  11