Options
Ong Soon An
Preferred name
Ong Soon An
Official Name
Ong, Soon An
Alternative Name
Ong, Soon An
Ong, S. A.
Soon An, Ong
Soon-An, Ong
ONG, Soon An
Ong, Soon an
Soon-An, Ong
Main Affiliation
Scopus Author ID
57201387782
Researcher ID
B-9255-2012
Now showing
1 - 10 of 20
-
PublicationTransformation from biofiltration unit to hybrid constructed wetland-microbial fuel cell: Improvement of wastewater treatment performance and energy recovery( 2023-05-01)
;Teoh T.P. ;Koo C.J. ;Tan S.M. ;Yap K.L.This study aimed to compare the performance of biofiltration, constructed wetland, and constructed wetland microbial fuel cell (CW-MFC). The transformation from a biofiltration unit to a hybrid CW-MFC was demonstrated with the advantages of improvement of wastewater treatment while generating electricity simultaneously. The introduction of plants to the upper region of the bioreactor enhanced the DO level by 0.8 mg/L, ammonium removal by 5 %, and COD removal by 1 %. The integration of electrodes and external circuits stimulated the degradation rate of organic matter in the anodic region (1 % without aeration and 3 % with aeration) and produced 5.13 mW/m3 of maximum power density. Artificial aeration improved the nitrification efficiency by 38 % and further removed the residual COD to an efficiency of 99 %. The maximum power density was also increased by 3.2 times (16.71 mW/m3) with the aid of aeration. In treating higher organic loading wastewater (3M), the maximum power density showed a significant increment to 78.01 mW/m3 (4.6-fold) and the COD removal efficiency was 98 %. The ohmic overpotential dominated the proportion of total loss (67-91 %), which could be ascribed to the low ionic conductivity. The reduction in activation and concentration loss contributed to the lower internal resistance with the additional aeration and higher organic loading. Overall, the transformation from biofiltration to a hybrid CW-MFC system is worthwhile since the systems quite resemble while CW-MFC could improve the wastewater treatment as well as recover energy from the treated wastewater. -
PublicationEffect of carbon materials as cathode on wastewater treatment and bioelectricity generation in a double chambered microbial fuel cell( 2021-02-23)
;Yap K.L.Guo K.Microbial fuel cell (MFC) is a promising and sustainable technology that has high efficiency to produce renewable energy and treat wastewater simultaneously. The effect of carbon materials on the removal of synthetic wastewater in the anodic chamber and electricity generation were investigated using a double chambered MFC. In this study, a double chambered reactor made up of anodic and cathodic chambers separated by proton exchange membrane has been developed. Carbon plate and carbon felt were characterized using scanning electron microscopy. Results revealed that 1.20 times higher chemical oxygen demand removal of synthetic wastewater using carbon felt (50.90%) as compared with that of carbon plate (43.52%). The maximum voltage output produced by carbon felt (280.20 mV) was 20.70% higher than carbon plate (222.20 mV) as cathode in MFC. The surface morphology of carbon materials has significant effect on the oxygen reduction reaction reactivity at cathodic chamber. -
PublicationComparative study of dihydroxybenzene isomers degradation and bioelectricity generation using CuO as cathodic catalyst in double chambered microbial fuel cell( 2022-10-01)
;Yap K.L. ;Guo K. ;Liew Y.M. ;Thor S.H. ;Tan S.M.Teoh T.P.A double chambered microbial fuel cell (MFC) showed enormous capacity in the simultaneous degradation of synthetic wastewater and dihydroxybenzene isomers (catechol, resorcinol and hydroquinone) and concurrently with bioelectricity generation. Operating parameter such as effect of catalyst on MFC system was evaluated using bare carbon plate and copper (II) oxide (CuO) loaded carbon plate as cathodes, respectively, in terms of chemical oxygen demand (COD) and dihydroxybenzene isomers removal efficiency, maximum voltage output and power density. Results revealed that the application of CuO loaded carbon plate was more effective in the COD removal of synthetic wastewater in the anodic chamber and degradation of dihydroxybenzene isomers in the cathodic chamber. Compared with the bare carbon plate as cathode, the COD removal efficiency of synthetic wastewater, removal rate of dihydroxybenzene isomers and maximum voltage output increased 20, 100 and 31 %, respectively, when CuO was applied as cathodic catalyst. Among the dihydroxybenzene isomers, hydroquinone exhibited the best performance in both absence and presence of catalyst in the MFC. The position of the substituent of hydroxyl groups possessed significant effect on the reaction rate, reactivity and conductivity of dihydroxybenzene isomers. Hydroquinone was more susceptible to be degraded than that of catechol and resorcinol due to its lower dipole moment which eased the bond cleavage. The intermediate products of degradation of catechol, resorcinol and hydroquinone were determined using gas chromatograph-mass spectrometer and the degradation pathways were proposed. -
PublicationCrucial roles of aeration and catalyst on caffeine removal and bioelectricity generation in a double chambered microbial fuel cell integrated electrocatalytic process( 2021-02-01)
;Yap K.L. ;Guo K. ;Oon Y.S. ;Ong Y.P.Thor S.H.The effects of aeration and catalyst on caffeine removal in the cathodic chamber and electricity generation of a double chambered microbial fuel cell (MFC) integrated electrocatalytic process were investigated. The overall performances of MFC in caffeine removal and electricity generation were significantly enhanced under the presence of copper (II) oxide (CuO) and aeration. CuO was synthesized using a hydrothermal method and was immobilized on the carbon plate for application as cathode. The CuO particles and CuO loaded carbon plate (CuO/C) were characterized by using X-ray diffractometer and scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy. The effective transfer of electrons from anodic chamber to cathodic chamber for oxygen reduction reaction (ORR) accelerated the removal of caffeine using CuO/C cathode under aerated condition. Results revealed that 15-fold higher removal efficiency of caffeine was obtained using CuO/C cathode (52.16 %) as compared with that of bare carbon plate (bare C) (3.41 %) at the first 24 h under aerated condition. The highest maximum power density and current density (28.75 mW m-2 and 253.33 mA m-2) were obtained for CuO/C cathode under aerated condition. Bare C cathode possessed the lowest maximum power density and current density (9.75 mW m-2 and 106.67 mA m-2) under unaerated condition. The circuit connection greatly improved the chemical oxygen demand removal of synthetic wastewater in the anodic chamber when the cathodic chamber was under aerated condition. The detailed mechanisms of the effects of CuO catalyst and aeration on the ORR at cathodic chamber were discussed. -
PublicationDiscerning the biodegradation of binary dyes in microbial fuel cell: Interactive effects of dyes, electron transport behaviour, autocatalytic mechanism, and degradation pathways( 2022-06-01)
;Tan S.M. ;Wong Y.S. ;Teoh T.P.Yap K.L.This research presented the first attempt to investigate the effect of biodegradation of binary Acid Orange 7 (AO7) and Reactive Green 19 (RG19) on the performances of wastewater treatment and bioelectricity generation, using anti-gravity flow microbial fuel cell (AGF-MFC) system. The influences of initial dye concentration, substrate loading, sulphate concentration and application of quinones on system performances were comprehensively evaluated. The decolourization efficiencies of AO7 were higher than RG19 in binary solutions, at every tested concentrations. The addition of higher concentration of RG19 in binary solution was also found to have increased the overall performances of MFC, owing to electron mediating characteristics of its decolourized intermediates. However, the power density declined with the addition in dye concentration. Further increase of substrate loading by 3-folds (2.43 g/L) improved the decolourization efficiency approximately by 7%, but deteriorated power performance by 42%, to 63.40 ± 0.07 mW/m2. Increasing sulphate concentration from 20 to 400 mg/L had resulted in a high decolourization extent of binary dyes ascribed to sulphide-mediated dye degradation, whereas the power generation was reduced. The increase of sulphate to 800 mg/L led to decrease in decolourization and power density of the system. These outcomes deciphered the competitions of electrons between different electron acceptors in the anodic compartment. Moreover, the autocatalytic mechanism of RG19 decolourized intermediates, 1-amino-2-naphthol-3,6-disulphonate (1A2N36S) as electronophore was thoroughly unearthed. Detailed degradation pathways of dyes were proposed based on UV-Visible spectra and gas chromatograph-mass spectrometer (GC-MS) analyses. -
PublicationCaffeine-containing wastewater treatment and bioelectricity generation in up-flow constructed wetland-microbial fuel cell: Influence of caffeine concentration, operating conditions, toxicity assessment, and degradation pathway( 2022-04-01)
;Teoh T.P. ;Oon Y.L. ;Tan S.M. ;Ong Y.P.Yap K.L.This study explored the potential of caffeine being utilized as the fuel for the microbes to produce electrons for electricity generation in up-flow constructed wetland-microbial fuel cell (UFCW-MFC). The effect of caffeine concentration was investigated to identify the availability of UFCW-MFC in the conversion of caffeine to electrons for electricity production; and the effect of operating conditions (circuit connection, supplementary aeration, and plant) was studied to determine their significance in the treatment of caffeine containing wastewater. The UFCW-MFC achieved about 98% of decaffeination efficiency regardless of caffeine concentration; while a decrease of efficiency was observed when UFCW-MFC operated without supplementary aeration and plant (~93%). COD removal efficiency decreased correspondingly to the increase of caffeine concentration, which could be contributed by the higher concentration of caffeine and its intermediates. The degradation pathway of caffeine in UFCW-MFC was explored in this study. It was remarkable that ammonia was produced and converted to ammonium ions during caffeine catabolism. Supplementary aeration and macrophyte play a crucial role in removing excess caffeine, intermediates as well as accumulated ammonium ions. The toxicity assessment revealed that caffeine was degraded to less toxic products. The closed circuit connection not only contributed to electricity generation but also enhanced the caffeine and COD removal efficiency by 4.6 and 5.4% in the anaerobic region, respectively. The increase of voltage and maximum power density from phase I to phase IV indicated that caffeine could be converted to electrons by the anaerobes for electricity production. -
PublicationAdopting co-metabolism strategy for optimized biotreatment of ortho-hydroxytoluene and bioelectricity generation in microbial fuel cell: Transformation products and pathways( 2022-10-01)
;Tan S.M. ;Wong Y.S. ;Teoh T.P.Yap K.L.This study investigated the effects of carbon source availability and concentrations, external loads (Rload), and cathode conditions on the overall removal rate of ortho-hydroxytoluene and bioelectricity generation characteristics in anti-gravity flow microbial fuel cell (AGF-MFC) through co-metabolism approach. Sodium acetate outperformed sucrose, glucose and carbamide, and the optimum influent acetate concentration (1000 mg L−1) significantly enhanced the o-hydroxytoluene degradation by 13.41 % (98.71 %), output voltage by 15.14 % (609.25 mV) and power generation by 30.96 % (159.44 mW m−2). The results demonstrated that there were prominent differences in MFC performances under different Rload (p < 0.05). Different external load conditions resulted in varying electron transfer reactions, and thus affecting the removal efficiency and power responses of MFC system. A complete removal of o-hydroxytoluene and highest power density of 173.10 mW m−2, with a Chemical Oxygen Demand (COD) removal of 93.56 % were obtained with the Rload of 230 Ω, where the Rload approaches the cell design point. Hysteresis phenomenon was detected in the dynamic polarization during Rload variations. Moreover, it was observed that the removal efficiency of o-hydroxytoluene was significantly enhanced with aeration rate of 50 mL min−1, and dissolved oxygen concentration of 5.4 mg L−1. Conversely, higher aeration rate (400 mL min−1) had caused a decline of 26 % in power generation, ascribed to the limited active surface area for oxygen reduction reaction. Additionally, the degradation pathway of o-hydroxytoluene was proposed based on the identified intermediates. -
PublicationDiscovering the roles of electrode distance and configuration in dye degradation and electricity generation in photocatalytic fuel cell integrated electro-Fenton process( 2022-01-01)
;Thor S.H. ;Nordin N. ;Ong Y.P.Yap K.L.Photocatalytic fuel cell (PFC) integrated electro-Fenton (EF) system (PFC-EF system) was considered as an eco-friendly approach for dye degradation and electricity generation simultaneously. The modification on configuration of PFC-EF system was aimed to improve the dye degradation and power output. Effect of electrode distance on the efficiency of PFC-EF system was investigated as it was a crucial factor in the mass transfer of ions in PFC-EF system. Closer electrode distance reduced the resistance flow of ions and enhanced the mass transfer of ions between the electrodes in both PFC and EF, eventually yielded higher concentration of reactive species for removal of dye. Four different electrode configurations by varying the number of cathodes in PFC and EF were investigated to discover the most efficient operating configuration for this PFC-EF system. The dye decolourization rate was evaluated and compared by using pseudo-first order and second order in both PFC and EF system, respectively. Results revealed that single cathode PFC-EF system was the most effective configuration in dye degradation while double cathodes PFC-EF system was the optimal configuration to be used for power output. -
PublicationConverting synthetic azo dye and real textile wastewater into clean energy by using synthesized CuO/C as photocathode in dual-photoelectrode photocatalytic fuel cell( 2023-04-01)
;Khalik W.F. ;Lai N.B. ;Thor S.H.Yap K.L.Cathode in photocatalytic fuel cell (PFC) plays a crucial role in degradation of organic contaminants. In this study, synthesized copper oxide (CuO) was loaded on carbon plate and used as photocathode in PFC for degradation of synthetic azo dye Reactive Black 5 (RB5) and real textile wastewater. Morphology and structural phase of the synthesized CuO were analyzed using scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. Several operating parameters had been investigated such as light irradiation, initial dye concentration, and pH of azo dye solution within 6 h of irradiation time. The lowest initial concentration of RB5 (10 mg L−1) achieved 100% color removal compared to the highest initial concentration (40 mg L−1) which only achieved 77.1% color removal within 6 h of irradiation time. The influence of external resistance was significant in electricity generation but trivial in dye degradation efficiency. The external resistance of 6000 Ω yielded highest maximum power density, with Pmax of 0.2631 μW cm−2, followed by 1000 Ω (0.2196 μW cm−2) and 8000 Ω (0.1587 μW cm−2), respectively. The real textile wastewater with dilution ratio (DR) 1:6 yielded the highest energy conversion efficiency, η (3.62%), followed by DR 1:4 (3.19%) and DR 1:2 (1.96%), respectively. -
PublicationInsights into the decolorization of mono and diazo dyes in single and binary dyes containing wastewater and electricity generation in up-flow constructed wetland coupled microbial fuel cell( 2023-02-01)
;Teoh T.P. ;Oon Y.L. ;Tan S.M. ;Ong Y.P.Yap K.L.The treatment of single and binary azo dyes, as well as the effect of the circuit connection, aeration, and plant on the performance of UFCW-MFC, were explored in this study. The decolorization efficiency of Remazol Yellow FG (RY) (single dye: 98.2 %; binary dye: 92.3 %) was higher than Reactive Black 5 (RB5) (single: 92.3 %; binary: 86.7 %), which could be due to monoazo dye (RY) requiring fewer electrons to break the azo bond compared to the diazo dye (RB5). In contrast, the higher decolorization rate of RB5 in binary dye indicated the removal rate was affected by the electron-withdrawing groups in the dye structure. The closed circuit enhanced about 2% of color and 4% of COD removal. Aeration improved the COD removal by 6%, which could be contributed by the mineralization of intermediates. The toxicity of azo dyes was reduced by 11–26% and the degradation pathways were proposed. The dye removal by the plants was increased with a higher contact time. RB5 was more favorable to be uptook by the plant as RB5 holds a higher partial positive charge. 127.39 (RY), 125.82 (RB5), and 58.66 mW/m3 (binary) of maximum power density were generated. The lower power production in treating the binary dye could be due to more electrons being utilized for the degradation of higher dye concentration. Overall, the UFCW-MFC operated in a closed circuit, aerated, and planted conditions achieved the optimum performance in treating binary azo dyes containing wastewater (dye: 87–92%; COD: 91%) compared to the other conditions (dye: 83–92%; COD: 78–87%).