Now showing 1 - 8 of 8
  • Publication
    The effect of torrefaction reaction temperature on the Elaeis Guineensis Empty Fruit Bunch (EFB) pellet durability and calorific value
    Empty Fruit Bunch (EFB) are not being fully utilized for energy production due to its high moisture content, low density, having bulky characteristics and low calorific value. In order to improve characteristic of Elaeis Guineensis empty fruit bunch as fuel, pre-treatment process is necessary to overcome these shortcomings. Therefore, the aim of this research is to examine the effect of torrefaction reaction temperature on the Elaeis Guineensis pellet energy characteristics. The observed pellet qualities include the pellet durability and calorific value of the pellet. The torrefaction of empty fruit bunch was conducted in a fixed-bed reactor at 200 C, 220 C, 240 C and 260 C. The torrefied sample was pelletized, analysed and tested to examine the characteristics of empty fruit bunch biomass as fuel. The pelletization process was carried out by using the cold single press pelletizer and using cassava starch as binder. At higher torrefaction temperature, the decomposition of cellulose and lignin become more prominent. At the torrefaction temperature 260 C, the gross calorific value is the highest due to the removal of moisture, release of volatile matter and the decomposition of biomass components such as hemicellulose, cellulose and lignin which resulted in energy densification. By comparing the torrefied empty fruit bunch at 260 C with the untorrefied empty fruit bunch, it was found that the torrefaction increased the energy densification and pellet qualities of empty fruit bunch that can be utilized as biomass energy sources in renewable energy.
  • Publication
    Production of Solid Biofuels From Renewable Resources: A Review
    Increasing concerns over greenhouse gas emissions, volatile fossil fuel prices, and political instability have led to biomass as a renewable energy source. Close cooperation from the government supported by independent bodies also helps produce this effective and sustainable energy source. As a result, the current growth of solid biofuels has increased tremendously. Agricultural, municipal, forest, commercial waste and dedicated energy crops are the main sources of biomass. Due to this biomass's nature, the methods to produce them into solid biofuels are also different. The energy potential of these biomass sources is quite dependent on the use of technology and public awareness. Therefore, this paper review feedstock biomass, processing processes, product types and properties of solid biofuels in terms of mechanical and combustion. The paper also reviews the solid biofuel production situation in Malaysia.
  • Publication
    The Effect of Different Waste Material Binders in Relation to Khaya Senegalensis Solid Fuel Pellet Quality
    Fuel pellets are an attractive renewable energy source derived from biomass sources thanks to their uniformity and ease of handling. However, raw biomass and waste material binders have several drawbacks, which include poor physical properties, particularly low density and compositional heterogeneity, which restrict their wider use as a general source of energy. Besides, due to the low energy density, low bulk density, and uneven shape and size of raw biomass, it is very difficult to store and transport biomass in its original form, which decreases transport efficiency. This study investigated the effect of waste material binders (rice husk, corn cob, and sugarcane bagasse) on the mechanical and thermal properties of Khaya Senagalensis pellets. The mechanical and thermal properties were determined according to ASTM standards. Waste material binders have affected pellet quality such as density, bulk density, moisture content, durability, compressive strength, shatter index, water resistance, ash content, volatile matter, fixed carbon, and calorific value. From the analysis, sugarcane bagasse as a binder shows the highest quality pellet in terms of mechanical properties. Sugarcane bagasse produces the highest density (0.967g/cm3), bulk density (0.4094), durability (99.71%), shatter index (98.85%), water resistance (98.35%), and thermal properties, which are the highest volatile matter (94.71%) and the lowest ash content (1.71%). In a nutshell, sugarcane bagasse is a good binder that gives a positive impact to the K.senegalensis pellets in terms of storage and transportation compared to corn cob and rice husk binder.
  • Publication
    Mechanical and physical properties of khaya senegalensis solid fuel pellet with different binder percentages
    The characteristics of the solid fuel pellets, such as its strength, durability and density can be used to assess its quality. During the transport and storage, pellets with low strength and durability produces dusts and ultimately resulting in equipment blockage, high pollution emissions, and an increased risk of fire and explosion. Therefore, pellet manufacturing process should be given priority to improve pellet quality. The use of binder in the production of pellets will aid in improving pellet quality. Therefore, this study investigates the influence of different binder percentages on the mechanical properties of K. senegelensis fuel pellets. Durability, unit density, bulk density and diametral compressive strength testing were carried out in compliance with international standards. It was discovered that pellets containing 4% cassava starch binder produces better results, particularly in terms of durability and compressive ldiametral strength.
  • Publication
    The effect of different khaya senegalensis raw feedstock particle sizes on solid fuel pellet quality
    In recent years, the usage and demand for biomass pellet has been increasing due to the need of substitution for non-renewable energy source. Therefore, high quality solid fuel is in need to cater this demand. Pellet qualities such as durability, calorific value and density are different depending on the type of material, size of particle and the density of the feedstock. In this study, the durability, calorific value and unit density of Khaya Senegalensis pellet was investigated. This was done to identify the optimum particle size to obtain the best qualities of pellet possible. The ground biomass material was separated into 0.15 mm, 0.50 mm and 1.00 mm particle sizes, pelletized and ultimately the pellet durability, calorific value and unit density were tested in this study. It was found that 0.15 mm particle size resulted in the highest pellet durability, and density value. 1.00 mm particle size pellet has the highest calorific value. As a conclusion, different raw biomass feedstock particle size will affect the durability, density and calorific value of pellet.
  • Publication
    Soil Macrofauna abundance in the intercropping of Mangifera Indica with aromatic plants
    Soil macrofauna such as earthworms, beetles, ants, and centipedes are an important aspect of soil health as they help in the breakdown of plant residue to provide natural resources such as carbon, nitrogen, and phosphorous into the soil. Monocropping practice uses heavy machinery, pesticides, and herbicides to maintain farm productivity, which negatively impacts soil macrofauna abundance. Thus, intercropping is a sustainable practice for farmers to maintain soil health with the minimal use of external input, which can do more harm to the soil ecosystem over a long period of time. The objective of the study is to evaluate the effect of intercropping mango with pandan and lemongrass on soil macrofauna density compared to mango monocrop. The field experiment consisted of mango, mango-pandan intercrops, and mango-lemongrass intercrops. Soil macrofauna was assessed using the tropical soil biology and fertility (TSBF) monolith method. The result showed that intercropping of mango-lemongrass and mango-pandan had higher soil macrofauna density compared with mango monocrop due to the presence of intercrops providing more natural resources and a better soil environment for soil macrofauna to grow and reproduce. However, further long-term research is needed to reinforce these findings.
      10  12
  • Publication
    Design and fabrication of automatic temperature control for chicken shade
    ( 2024-03)
    M.H.H. Asaad
    ;
    ;
    R. I. Ismail
    ;
    ; ;
    Wan Nur Atiqah Wan Draman
    One of the most crucial sectors to explore in Malaysia are agriculture and poultry. Indeed, there is a strong correlation between agricultural growth and economic growth. The inconsistent weather in Malaysia will cause the temperature to increase and decrease, and this problem will affect the health of the chicken. Small-sector farmers cannot afford the high cost of installing and maintaining the temperature control system. Therefore, new effective technological approaches were required to continuously improve the productivity, profitability, and sustainability of major farming systems. An automatic temperature control system was designed to control the temperature in the chicken shade. This system was controlled by Arduino UNO, which was programmed using Arduino IDE software. The system started to operate when the sensor detected the temperature in the chicken shade above 28oC. The exhaust fan, pump, and water sprinkler are the main components in this system that control the temperature in the chicken shade. The system reduced the temperature in the chicken shade by 1oC to 3oC. The system also affects the rate of chicken growth. By lowering the temperature in the chicken shade, the rate of the chicken growth increases. The chicken starts to grow faster in week 3 at 5 weeks. Starting in week 3, the chicken in controlled room temperature was 46g heavier than the average chicken weight in a normal room. In week four, the average chicken weight in a controlled room was 116.25g heavier than in a normal room. In week six, the average weight of chicken in the controlled room was 884.5, while in normal room conditions, it was 732g. The initial bar graph and week six bar graph for both conditions show significant differences in the chicken's growth rate.
      1  31
  • Publication
    The effect of torrefaction reaction temperature on the Elaeis Guineensis Empty Fruit Bunch (EFB) pellet durability and calorific value
    Empty Fruit Bunch (EFB) are not being fully utilized for energy production due to its high moisture content, low density, having bulky characteristics and low calorific value. In order to improve characteristic of Elaeis Guineensis empty fruit bunch as fuel, pre-treatment process is necessary to overcome these shortcomings. Therefore, the aim of this research is to examine the effect of torrefaction reaction temperature on the Elaeis Guineensis pellet energy characteristics. The observed pellet qualities include the pellet durability and calorific value of the pellet. The torrefaction of empty fruit bunch was conducted in a fixed-bed reactor at 200°C, 220°C, 240°C and 260°C. The torrefied sample was pelletized, analysed and tested to examine the characteristics of empty fruit bunch biomass as fuel. The pelletization process was carried out by using the cold single press pelletizer and using cassava starch as binder. At higher torrefaction temperature, the decomposition of cellulose and lignin become more prominent. At the torrefaction temperature 260°C, the gross calorific value is the highest due to the removal of moisture, release of volatile matter and the decomposition of biomass components such as hemicellulose, cellulose and lignin which resulted in energy densification. By comparing the torrefied empty fruit bunch at 260°C with the untorrefied empty fruit bunch, it was found that the torrefaction increased the energy densification and pellet qualities of empty fruit bunch that can be utilized as biomass energy sources in renewable energy.