Now showing 1 - 4 of 4
  • Publication
    Effect of sodium hydroxide molarity on physical, mechanical and thermal conductivity of metakaolin geopolymers
    In the present work, the effect of different sodium hydroxide (NaOH) molarity (6M, 8M, 10M, 12M and 14M) on the physical, mechanical and thermal conductivity of metakaolin geopolymers (MkGPs) was investigated. Geopolymers were prepared by activating the metakaolin with a mixture of NaOH with sodium silicate (Na₂SiO₃). The products obtained were characterized after 28 days of curing. The density, porosity, compressive strength and thermal conductivity (TC) were determined. In general, the NaOH molarity has a significant effect on the compressive strength of the MkGPs. The highest compressive strength was 14.6 MPa achieved with 10M of NaOH solution. The thermal conductivity of MkGPs measured in this work was low in the range between 0.71-0.97 W/mK. NaOH molarity had a significant effect on compressive strength but a marginal effect on thermal conductivity of MkGPs. The thermal conductivity was mainly affected by the bulk density and thus the total porosity. The results showed that the geopolymer can be considered to be used as the thermal insulating material.
      1  13
  • Publication
    Effect of sodium hydroxide molarity on physical, mechanical and thermal conductivity of metakaolin geopolymers
    In the present work, the effect of different sodium hydroxide (NaOH) molarity (6M, 8M, 10M, 12M and 14M) on the physical, mechanical and thermal conductivity of metakaolin geopolymers (MkGPs) was investigated. Geopolymers were prepared by activating the metakaolin with a mixture of NaOH with sodium silicate (Na2SiO3). The products obtained were characterized after 28 days of curing. The density, porosity, compressive strength and thermal conductivity (TC) were determined. In general, the NaOH molarity has a significant effect on the compressive strength of the MkGPs. The highest compressive strength was 14.6 MPa achieved with 10M of NaOH solution. The thermal conductivity of MkGPs measured in this work was low in the range between 0.71-0.97 W/mK. NaOH molarity had a significant effect on compressive strength but a marginal effect on thermal conductivity of MkGPs. The thermal conductivity was mainly affected by the bulk density and thus the total porosity. The results showed that the geopolymer can be considered to be used as the thermal insulating material.
      5  39
  • Publication
    Correlation between pore structure, compressive strength and thermal conductivity of porous metakaolin geopolymer
    This paper investigates the effect of mixing parameters (that are, alkali concentration, AA ratio, and MK/ AA ratio) on the thermal conductivity of metakaolin geopolymers. The combination effect of foaming agent (H2O2) and surfactant (Tween 80) on the physical properties, compressive strength, and pore characteristic was also elucidated. Results showed that metakaolin geopolymer with maximum compressive strength of 33 MPa, bulk density of 1680 kg/m3 , porosity of 18% and thermal conductivity of 0.40 W/mK were achieved with alkali concentration of 10 M, AA ratio of 1.0 and MK/AA ratio of 0.8. Gradation analysis demonstrated that AA ratio was the strength determining factor. Whilst, thermal conductivity was dependent on the MK/AA ratio. Adding H2O2 and surfactant produced geopolymer foam with acceptable compressive strength (0.4–6 MPa). The geopolymer foam had bulk density of 471–1212 kg/m3 , porosity of 36–86% and thermal conductivity of 0.11–0.30 W/mK. Pore structure, size, and distribution were governed by H2O2 and surfactant dosages that have a great impact on the compressive strength. Narrower pore distribution and smaller pore diameter were achieved when both foaming agent and surfactant were used instead of foaming agent alone. The pore size and distribution varied to a greater extent with varying H2O2 contents. Surfactant illustrated distinct pore stabilizing effect at low H2O2 (<0.75 wt%) which diminished at high H2O2 content. In terms of thermal conductivity, even with increasing porosity at high H2O2 and surfactant content, the thermal conductivity did not show substantial reduction due to the interconnected pores as a result of pore coalescence
      20  20
  • Publication
    Kaolin geopolymer as precursor to ceramic formation
    ( 2016) ; ;
    Che Mohd Ruzaidi Ghazali
    ;
    Mohammed Hussain
    ;
    ;
    This paper introduced the potential application of kaolin geopolymer as ceramic precursor. This is one of the alternatives to produce high strength ceramic at a slightly lower temperature. Upon sintering the conversion of geopolymer to ceramic occur. The kaolin used were characterized using XRF and has plate-like structure upon investigating through microstructural analysis. Geopolymer mixture is produced using 12 M NaOH molarity with the Na2SiO3/NaOH ratio of 0.24. The sintering temperature used were ranging from 900 °C to 1200 °C. The flexural strength showed the highest value of 88.47 MPa when sintered at 1200 °C. The combination of geopolymerization and sintering has attributed to the strength increment as temperature increased. The density is observed to increase with increasing sintering temperature due to the appearance of the close pores in the structure. Sintering of the geopolymer resulted in the formation of liquid phase, which enables the joining of particles to produce dense microstructure.
      1  8