Now showing 1 - 10 of 18
  • Publication
    Experimental study on modified GOA-MPPT for PV system under mismatch conditions
    ( 2024)
    Nur Afida Muhammad
    ;
    ; ;
    Mohd Nasrul Izzani Jamaludin
    ;
    Shahrin Md Ayob
    ;
    Tole Sutikno
    This paper presents a modified grasshopper optimization algorithm (GOA) tailored for optimizing the power extraction capability of a solar photovoltaic (PV) system. The algorithm`s focus is on addressing one of the issues associated with mismatch loss (MML), particularly the mismatch (MM) in solar irradiance conditions, to attain maximum output power. The core strategy of the GOA involves optimizing the duty cycles of the converter to achieve the maximum power point (MPP) for the PV system. The PV system configuration comprises three PV modules connected in series and a SEPIC converter. To facilitate efficient maximum power point tracking (MPPT), the paper proposes using the GOA as a controlling mechanism. The study employs a comparative approach, contrasting the performance of the proposed system against established algorithms, such as PSO and GWO. The results of these evaluations exhibit the superior performance of the proposed GOA when compared to other optimization techniques. The GOA exhibits exceptional MPPT tracking characteristics, characterized by rapid tracking speed, heightened efficiency, and minimal oscillations within the PV system. Consequently, the GOA effectively addresses one of the MML issues.
  • Publication
    Enhanced two-terminal impedance-based fault location using sequence values
    Fault at transmission line system may lead to major impacts such as power quality problems and cascading failure in the grid system. Thus, it is very important to locate it fast so that suitable solution can be taken to ensure power system stability can be retained. The complexity of the transmission line however makes the fault point identification a challenging task. This paper proposes an enhanced fault detection and location method using positive and negative-sequence values of current and voltage, taken at both local and remote terminals. The fault detection is based on comparison between the total fault current with currents combination during the pre-fault time. While the fault location algorithm was developed using an impedance-based method and the estimated fault location was taken at two cycles after fault detection. Various fault types, fault resistances and fault locations have been tested in order to verify the performance of the proposed method. The developed algorithms have successfully detected all faults within high accuracy. Based on the obtained results, the estimated fault locations are not affected by fault resistance and line charging current. Furthermore, the proposed method able to detect fault location without the needs to know the fault type.
  • Publication
    Impacts of albedo and atmospheric conditions on the efficiency of solar energy: a case study in temperate climate of Choman, Iraq
    ( 2021-01-01)
    Aziz A.S.
    ;
    ; ;
    Ramli M.A.M.
    Temperature and solar radiation have large effects on the performance of photovoltaic (PV) systems. PV cell temperature is related to the ambient temperature, while the solar radiation incident on PV surface depends on the slope and azimuth of the PV panels. Furthermore, ground reflectance (albedo) affects the solar radiation incident on the PV surface and hence influences its performance. Nevertheless, the impact of some important factors on the PV performance such as the ground reflectance at different tilt angles and temperature coefficient of power under Middle East (temperate) climatic conditions are scarcely reported. In this research paper, a techno-economic analysis has been done to investigate the impact of temperature, tilt and azimuth angles, and ground reflectance on the performance of solar energy system. HOMER software was used as a tool in this study where Choman, Iraq, was selected as a case study. The results indicate that with a base case (temperature coefficient of − 0.48%/ Â°C, albedo of 20% and ambient temperature of 11 Â°C), facing the PV to south with a tilt angle of 40° or 45° results in the most economical system by having net present cost of $70595 and cost of energy of $0.54/kWh. Furthermore, PV modules with high sensitivity to temperature are found to be an attractive option based on Choman ambient temperature. Meanwhile, increasing the ground reflectance from 10 to 90% results in an increase of the annual optimum tilt angle from 38° to 52° and a decrease of the PV required capacity from 20.8 to 19.4 kW (for temperature coefficient of − 0.48%/ Â°C). The results prove that the studied parameters must be treated well to establish an enabling environment for PV development in Iraq.
  • Publication
    Review of Control Strategies for Improving the Photovoltaic Electrical Efficiency by Hybrid Active Cooling
    Photovoltaic (PV) cooling systems are used widely in order to increase the PV efficiency. Most review paper was published for the role, design and cooling techniques of PV applications, there is a lack of collected and organised information regarding the latest and the newest updates on control strategies for PV cooling control systems. Hence, this paper presents a comprehensive review of PV cooling control strategies discussing the latest research works during the years from 2010 to 2022. PV/T hybrid cooling types are highlighted, followed by the main focus of this paper an extensive review of the control schemes for diverse types of PV cooling systems that have been carried out. This paper summarises most of the related work and also pays a special focus on research trends regarding the control of PV cooling systems that have been previously published in the literature. This review paper will be helpful to new researchers when identifying research directions for this particular area of interest.
  • Publication
    Modeling, experimental investigation and real-time control of active water cooling system for photovoltaic module
    Photovoltaic (PV) cells are integral in harnessing solar energy, yet their performance is hindered by excessive heat generation, impacting efficiency and sustainability. Addressing the challenge of efficiency loss in photovoltaic (PV) cells due to overheating, this study focuses on optimizing active water cooling control for PV modules. The aim is to develop a dynamic, sustainable model and integrate a PID controller tuned by Sine Cosine Algorithm (SCA), targeting optimal operating temperatures. This study introduces a dynamic model and a closed-loop control system to manage PV cell temperature, investigating the correlation between water flow and temperature regulation. Experimental data is gathered using a pseudo-random binary sequence (PRBS) as an excitation signal, forming the foundation of an Auto Regressive eXogenous (ARX) model. The closed-loop system incorporates a PID controller and tuned using the Sine Cosine Algorithm (SCA) to optimize performance. The resulting model is rigorously validated through experimental investigation, demonstrating its precision in capturing the system’s dynamics. Moreover, the implementation of a controller-based cooling system substantiates the model’s practical efficacy. The research demonstrates significant improvements when implementing a controller-based water-cooling system for photovoltaic (PV) modules. Compared to the baseline scenario without cooling, the system achieves a 34.5% reduction in average PV temperature (from 59.2°C to 38.9°C) and a 9.46% increase in average power output (from 196.7W to 215.3W). Moreover, this system utilizes only 248.8 liters of water, marking a substantial 64% decrease in water consumption compared to traditional free-flow cooling methods, which use 790.9 liters. The research demonstrates that the controller-based cooling approach is a sustainable option, delivering power output comparable to the free-flow method, yet significantly lowering water consumption. This research signifies a turning point for sustainability, offering an efficient and water-conscious approach for enhancing PV system performance, a crucial step toward a greener and more environmentally responsible energy future.
  • Publication
    Power Generation Improvement using Active Water Cooling for Photovoltaic (PV) Panel
    ( 2021-01-01) ; ; ;
    Nalini C.
    ;
    Edaris Z.L.B.
    ;
    Hasanuzzaman M.
    Photovoltaic (PV) cooling systems are commonly used to improve photovoltaic panels power generation and efficiency. Photovoltaic (PV) panels require irradiance to generate power, although increasing irradiance is often correlated with increasing temperature. These rapid increases of temperature in photovoltaic (PV) panels severely affect the power conversion operation. With a proper cooling process on its surface, a solar photovoltaic (PV) system can operate at a higher efficiency. This research aims to study the power improvement of active water-cooling on photovoltaic (PV) panels. A fixed minimum water flow of 5.80 l/min is sprayed onto the panel's front surface to reduce the temperature. The sprayed water created a thin water film and managed to reduce the temperature. Other than that, there is also reference photovoltaic (PV) panel, which is a panel without any cooling system. The outputs compared are the module temperature, maximum output power, open circuit voltage, and short circuit current. As the irradiance starts increasing, the panel temperature also begins to spike. However, with active water cooling, the temperature was able to be reduced by 37.67% during the day's hottest temperature. This reduction of temperature creates power improvement to the cooled panel up to 253W, compared to the reference panel output of only 223W. During the overheating of a photovoltaic (PV) panel, the open circuit voltage was found to be the most affected. This increase in power with active water cooling can potentially have a massive impact on large-scale photovoltaic (PV) panel installations.
  • Publication
    Fundamental study on the impacts of water-cooling and accumulated dust on photovoltaic module performance
    ( 2022-12-01)
    Alwesabi F.A.A.
    ;
    Aziz A.S.
    ;
    ; ; ; ;
    Satterlee C.
    ;
    Ayob S.M.
    ;
    Sutikno T.
    Photovoltaic (PV) modules have been becoming well-spread recently as alternative clean energy sources to traditional energy sources due to their efficiency and sustainability benefits. This paper applied various water temperatures and artificial dust levels to a couple of monocrystalline PV modules under outdoor conditions to observe their performance. Two different IV tracers were connected separately to each module for comparison purposes. Two temperature sensors were installed at the back of the panels to observe the cell temperatures. Besides, a temperature sensor was specified for ambient readings. Water flowed through an adjustable water-flow sensor to cool the overheated PV module using specific mass flow rates. The results indicate that the efficiency of the PV module starts to reduce when the panel temperature begins to surpass 49.1°C. It was discovered that cooling the PV module increases its efficiency from 0.97 percent at the lowest rate to 4.70 percent at the highest rate. Furthermore, accumulated dust on the PV module top surface can be reduced up to 3-fold under 110 g/m2 of dust, and up to 29.30% under 10 g/m2 of 100% of its generated energy. Improvement techniques and future work on PV module performance are also discussed.
  • Publication
    Feasibility analysis of grid-connected and islanded operation of a solar PV microgrid system: A case study of Iraq
    Iraq has massive potential for electricity generation from solar energy. Because the country currently suffers from daily electricity shortages, a grid-connected PV system is an unsuitable option since the PV cannot serve the load during the electricity blackouts. This paper aims to analyze the techno-economic and environmental feasibility of a solar PV microgrid system which is able to supply the load during both grid availability and outage periods. A household in Baghdad was selected as a case study. HOMER software was used to carry out the overall analysis using five different control strategies. The results indicated that the most economical configuration was achieved by allowing the grid to charge the batteries at all rates, with a net present cost (NPC) of $29,713. A sustainability assessment revealed that preventing the grid from charging the battery resulted in the highest renewable fraction and the lowest CO2 emissions with 64.9% and 4533 kg/year, respectively. Furthermore, inserting a diesel generator to an economically optimized system was found to reduce the NPC by 11.6%, while increasing the CO2 emissions by 32.7%. This study showed that implementing this sort of project can provide clean, economical, and continuous electricity production in countries with daily blackouts.
  • Publication
    Two-terminal fault detection and location for hybrid transmission circuit
    This paper presents the algorithms developed to detect and locate the faults at a hybrid circuit. First, the fault detection algorithm was developed using the comparison of total positive-sequence fault current between pre-fault and fault times to detect the occurrence of a fault. Then, the voltage check method was used to decide whether the fault occurred at overhead line (OHL) or cable section. Finally, the fault location algorithm using the impedance-based method and negative-sequence measurements from both terminals of the circuit were used to estimate the fault point from local terminal. From the tests of various fault conditions including different fault types, fault resistance and fault locations, the proposed method successfully detected all fault cases at around 1 cycle from fault initiation and with correct faulted section identification. Besides that, the fault location algorithm also has very accurate results of fault estimation with average error less than 1 km and 1%.
  • Publication
    Comparative Evaluation of Three-Phase Inverter Topologies Based on Voltage Boosting Features
    ( 2023-01-01)
    Yee C.S.
    ;
    ;
    Hwai L.J.
    ;
    ;
    Zahari M.Z.A.
    ;
    Voltage source inverter (VSI) is commonly used in industrial due to its stable operation and low cost. However, VSI needs to operate with an extra converter stage which is a DC-DC converter for voltage boosting purposes. In contrast, current source inverter (CSI) inherits voltage boosting features may become an alternative option to VSI. Yet, there were minimal research on CSI that dedicates to the voltage boosting features. This research focuses on comparing the voltage boosting features of CSI and VSI in both open-loop and closed-loop conditions. The performance of VSI and CSI are simulated using MATLAB/Simulink. Under open-loop operation, CSI produces a voltage boosting capability at approximately 55% higher than VSI. Yet, CSI suffers high THD percentage as compared to VSI for the same switching frequency. This high THD shortcoming can be easily resolved by using a simple CL filter. For closed-loop operation, VSI and CSI with voltage-controlled synchronous frame PI control systems are proven to have good reference tracking and harmonic rejection and are suitable to be implemented for household applications or for a standalone system. Interestingly, CSI closed-loop system can achieve a wider range of output due to the voltage boosting capability and provide a better quality of output waveform as compared to VSI.