Options
Midhat Nabil Ahmad Salimi
Preferred name
Midhat Nabil Ahmad Salimi
Official Name
Midhat Nabil, Ahmad Salimi
Alternative Name
Ahmad Salimi, Midhat Nabil
Salimi, Midhat Nabil
Main Affiliation
Scopus Author ID
54788410200
Now showing
1 - 2 of 2
-
PublicationGreen synthesized strontium oxide nanoparticles by Elodea canadensis extract and their antibacterial activity( 2022-06-01)
;Anbu P. ; ; ;Letchumanan I.Subramaniam S.The production of strontium oxide nanoparticles from an aquatic plant extract is described here. UV–vis spectroscopy at ~ 220 nm was used to confirm the biosynthesis of these particles, and the color of the mixtures altered from colorless to green. The morphology of Elodea canadensis strontium oxide nanoparticles (EcSrONPs) was characterized using FE-SEM. FE-SEM images demonstrated that these particles adopted disordered, irregular shapes with agglomeration and slightly smooth surfaces. FE-TEM confirmed the results of FE-SEM analysis. These particles were also evaluated using XRD, XPS, and FTIR. The XRD pattern revealed a face-centered cubic crystalline structure at (209) and (217), while the XPS results verified the presence of both strontium and oxygen in the synthesized EcSrONPs. FTIR results confirmed that phytochemical functional groups served as capping agents during EcSrONP synthesis. In addition, zeta potential analysis confirmed the stability of EcSrONPs. Finally, the antibacterial potential of the produced EcSrONPs against Escherichia coli and Bacillus subtilis was evaluated. The largest inhibitory zone against E. coli (diameter, 22 mm) and B. subtilis (diameter, 20 mm) was observed at a EcSrONPs concentration of 24 µg·mL−1. Collectively, the findings of this research show that the biosynthesis of EcSrONPs is a viable option for developing novel materials for biomedical applications.5 26 -
PublicationSynthesis and characterization of reduced graphene oxide using the aqueous extract of Eclipta prostrata( 2020-08-01)
;Chuah Regnant ; ;Anbu P. ; ;Lakshmipriya ThangavelIn this study, biological deoxygenation of graphene oxide (GO) using an Eclipta prostrata phytoextract was performed via the infusion method. The presence of oxide groups on the surface of graphene and removal of oxides groups by reduction were characterized through morphological and structural analyses. Field emission scanning electron microscopy images revealed that the synthesized GO and rGO were smooth and morphologically sound. Transmission electron microscopy images showed rGO developing lattice fringes with smooth edges and transparent sheets. Atomic force microscopy images showed an increase in the surface roughness of graphite oxide (14.29 nm) compared with that of graphite (1.784 nm) due to the presence of oxide groups after oxidation, and the restoration of surface roughness to 2.051 nm upon reduction. Energy dispersive X-ray analysis indicated a difference in the carbon/oxygen ratio between GO (1.90) and rGO (2.70). Fourier-transform infrared spectroscopy spectrum revealed peak stretches at 1029, 1388, 1578, and 1630 cm−1 for GO, and a decrease in the peak intensity after reduction that confirmed the removal of oxide groups. X-ray photoelectron microscopy also showed a decrease in the intensity of oxygen peak after reduction. In addition, thermogravimetric analysis suggested that rGO was less thermally stable than graphite, graphite oxide, and GO, with rGO decomposing after heating at temperatures ranging from room temperature to 600 °C.3 11