Options
Kamarulzaman Kamarudin
Preferred name
Kamarulzaman Kamarudin
Official Name
Kamarudin, Kamarulzaman
Alternative Name
Kamarudin, K.
Kamaruddin, Kamarulzaman
Main Affiliation
Scopus Author ID
55193266400
Researcher ID
DVV-8479-2022
Now showing
1 - 10 of 26
-
PublicationGanoderma boninense classification based on near-infrared spectral data using machine learning techniques( 2023-01-15)
;Mohd Hilmi Tan M.I.S. ;Jamlos M.F. ;Omar A.F.Ganoderma boninense (G. boninense) infection reduces the productivity of oil palms and causes a severe threat to the palm oil industry. Early detection of G. boninense is vital since there is no effective treatment to stop the continuing spread of the disease unless ergosterol, a biomarker of G. boninense can be detected. There is yet a non-destructive and in-situ technique explored to detect ergosterol. Capability of NIR to detect few biomarkers such as mycotoxin and zearalenone (ZEN) has been proven to pave the way an effort to explore NIR's sensitivity towards detecting ergosterol, as discussed in this paper. A compact hand-held NIR with a measurement range of 900–1700 nm is utilized by scanning the leaves of three oil palm seedlings inoculated with G. boninense while the other three were non-inoculated from 16-weeks-old to 32-weeks-old. Significant changes of spectral reflectance have been notified occur at the wavelength of ∼1450 nm which reflectance of infected sample is higher 0.2–0.4 than healthy sample which 0.1–0.19. The diminishing of the spectral curve at approximately 1450 nm is strongly suspected to happened due to the loss of water content from the leaves since G. boninense attacks the roots and causes the disruption of water supply to the other part of plant. However, a few overlapped NIRs' spectral data between healthy and infected samples require for further validation which chemometric and machine learning (ML) classification technique are chosen. It is found the spectra of healthy samples are scattered on the negative sides of PC-1 while infected samples tend to be on a positive side with large loading coefficients marked significant discriminatory effect on healthy and infected samples at the wavelength of 1310 and 1452 nm. A PLS regression is used on NIR spectra to implement the prediction of ergosterol concentration which shows good corelation of R = 0.861 between the ergosterol concentration and oil palm NIR spectra. Four different ML algorithms are tested for prediction of G. boninense infection: K-Nearest Neighbour (kNN), Naïve Bayes (NB), Support Vector Machine (SVM) and Decision Tree (DT) are tested which depicted DT algorithm achieves a satisfactory overall performance with high accuracy up to 93.1% and F1-score of 92.6% compared to other algorithms. High accuracy shows the capability of the classification model to correctly predict the G. boninense detection while high F1-score indicates that the classification is able to validate the detection of G. boninense correctly with low misclassification rate. The result represents a significant step in the development of a non-destructive and in-situ detection system which validated by both chemometric and machine learning (ML) classification techniques. -
PublicationAssessment of Control Drive Technologies for Induction Motor: Industrial Application to Electric Vehicle( 2021-06-11)
;Ahmad Firdaus A.Z. ;Azmi S.A.Kasa Z.C.M.Nowadays electric vehicle has increasingly gained much popularity indicated by growing global share market targeted at 30% by 2030 after recording 7.2million global stock in 2019. Compared to Internal Combustion Engine (ICE) counterpart, Battery Electric Vehicles (BEV) produce zero tailpipe emission which greatly reducing carbon footprints. Induction motor has been widely used and its control technology has evolved from scalar type volt/hertz to recent predictive control technology. This allows induction motor's application to expand from being the workhorse of industry to become prime mover in electric vehicle, where high performance is expected. Among vector control scheme, Direct Torque Control (DTC) has gained interest over Field Oriented Control (FOC) with simpler structure, better robustness and dynamics performance yet suffer from high torque and flux ripple. In electric vehicle applications, high ripple at low speed is highly undesirable, potentially causing torsional vibration. High performance control requires speed sensor integration, which often increase complexity in the design. The work aims to review the best control technology for induction motor in electric vehicle application through performance parameter evaluation such as improvement on dynamic response, torque and flux ripple reduction, and component optimization. Several arise issues in motor control and possible methods to circumvent are highlighted in this work. In conclusion, model predictive torque control (MPTC) is the most promising scheme for electric vehicle with excellent dynamic response, good low speed performance, and 50% torque ripple reduction compared to conventional DTC and potential integration with sliding mode observer for sensorless solution. -
PublicationPerformance analysis of the microsoft kinect sensor for 2D Simultaneous Localization and Mapping (SLAM) techniquesThis paper presents a performance analysis of two open-source, laser scanner-based Simultaneous Localization and Mapping (SLAM) techniques (i.e., Gmapping and Hector SLAM) using a Microsoft Kinect to replace the laser sensor. Furthermore, the paper proposes a new system integration approach whereby a Linux virtual machine is used to run the open source SLAM algorithms. The experiments were conducted in two different environments; a small room with no features and a typical office corridor with desks and chairs. Using the data logged from real-time experiments, each SLAM technique was simulated and tested with different parameter settings. The results show that the system is able to achieve real time SLAM operation. The system implementation offers a simple and reliable way to compare the performance of Windows-based SLAM algorithm with the algorithms typically implemented in a Robot Operating System (ROS). The results also indicate that certain modifications to the default laser scanner-based parameters are able to improve the map accuracy. However, the limited field of view and range of Kinect's depth sensor often causes the map to be inaccurate, especially in featureless areas, therefore the Kinect sensor is not a direct replacement for a laser scanner, but rather offers a feasible alternative for 2D SLAM tasks.
-
PublicationAn improved mobile robot based gas source localization with temperature and humidity compensation via slam and gas distribution mapping( 2016)This research is concerned with the problem of localizing gas source in indoor environment using a mobile robot. The problem could be seen as similar to the event of hazardous gas leak in a building. Since the environment is often unknown to the robot, the Simultaneous Localization and Mapping (SLAM) operation is required. Two open source SLAM techniques (i.e. Gmapping and Hector SLAM) were implemented to provide this crucial information. Extensive experiments and analysis on both SLAM techniques yielded that the Hector SLAM is more suitable for gas distribution mapping (GDM) application due to the improved robot pose estimation, less computational requirement and only performs map correction locally. Therefore, the Hector SLAM is combined with Kernel DM+V algorithm to achieve real-time SLAM-GDM for predicting gas source location. Rigorous real-time experiments were conducted to verify the performance of the proposed SLAM-GDM method in an uncontrolled office building with the presence of ethanol emission. The experimental results showed that the prediction of gas source location is often accurate to 0.5 to 2.0m. Furthermore, an Epanechnikov based Kernel DM+V algorithm was also introduced to limit extrapolation range in GDM computations. The observed advantages were lower computational requirement and slightly more accurate prediction on gas source location. More importantly, it was found that the maps produced were able to indicate the areas of unexplored gas distribution and therefore could be used for the robot‘s path planning. The final and the main part of the thesis deals with the effect of ambient temperature and humidity on metal oxide gas sensor (i.e. TGS 2600) response; which could affect the GDM results. Linear regression processes were conducted to create a model to correct the temperature and humidity drift of the gas sensor response. The model (i.e. function) was tested in various configurations and was found to minimize the effects of the two environmental factors on the gas sensor response in different gas concentrations. Finally, two versions of Kernel DM+V/T/H algorithms were proposed and coupled with the drift model to compensate for temperature and humidity variation during the GDM task. The experimental results showed that the Kernel DM+V/T/H algorithms were able to produce more stable gas distribution maps and improve the accuracy of gas source localization prediction by 34%.
-
PublicationReinforcement Learning for Mobile Robot's Environment Exploration( 2023-01-01)
;Teoh S.W.H. ;Ali N.A.N. ;Zainal M.M.M.Mobile robots are being are being applied in various industries to perform repetitive or dangerous tasks for humans to carry out. Autonomous mobile robots are more capable than automated guided vehicles (AGV) due to their ability to be adaptable to their environment which is important for exploration of unknown environments. It is difficult to program autonomous mobile robots to adapt to various situations it may face, thus machine learning can be applied to allow a mobile robot to learn how to navigate through environments by itself. Reinforcement learning is applied in this project so that a differential drive mobile robot can learn how to navigate through its environment while avoiding collision with surrounding walls and obstacles. The reinforcement learning process is simulated by using the Robot Operating System (ROS) and its simulator Gazebo. Controlled simulation environments are created using Gazebo for the purposes of training and performance testing. Simultaneous Localization and Mapping (SLAM) will be applied to generate a map of the environment. At the end of this project, the Turtlebot3 is able to map smaller controlled environments ranging between 18m2 to 27m2 without colliding with the surrounding walls.1 -
PublicationDeep Neural Network for Localizing Gas Source Based on Gas Distribution Map( 2022-01-01)
;Zaffry Hadi Mohd Juffry ;Mao X.Abdullah A.N.The dynamic characteristic of gas dispersal in uncontrolled environment always leads to inaccurate gas source localization prediction from gas distribution map. Gas distribution map is a representation of the gas distribution over an environment which helps human to observe the concentration of harmful gases at a contaminated area. This paper proposes the utilization of Deep Neural Network (DNN) to predict the gas source location in a gas distribution map. DNN learns from the previous gas distribution map data and patterns to generate a model that is able predict location of gas source. The results indicate that DNN is able to accurately predict the location within the range of 0.8 to 2 m from the actual gas source. This finding shows that DNN has a high potential for utilization in gas source localization application.1 -
PublicationGas Source Localization via Mobile Robot with Gas Distribution Mapping and Deep Neural Network( 2022-01-01)
;Ahmad Shakaff Ali Yeon ;Visvanathan R.With the growth of artificial intelligence compute technology, the gas source localization problem would be solved by mobile robots equipped with gas sensing system and artificial intelligence compute units. This work presented a feasibility study of deep learning approach towards gas source localization by mobile robots. A deep neural network strategy was developed and incorporated with the Kernel DM+V gas distribution mapping method. The gas source localization work in this paper was performed on a controlled indoor testbed. From this work, it is shown that by incorporating the developed deep neural network model, it may help improved the gas source location prediction accuracy. A comparison of accuracy between Kernel DM+V and the neural network model is also presented to better visualize the improvement.3 -
PublicationImproved mobile robot based gas distribution mapping through propagated distance transform for structured indoor environment( 2020-05-18)
;Visvanathan R. ;Toyoura M. ;Ali Yeon A.S. ;Mao X.Mobile robot carrying gas sensors have been widely used in mobile olfaction applications. One of the challenging tasks in this research field is Gas Distribution Mapping (GDM). GDM is a representation of how volatile organic compound is spatially dispersed within an environment. This paper addresses the effect of obstacles towards GDM for indoor environment. This work proposes a solution by improvising the Kernel DM + V technique using propagated distance transform (DT) as the weighing function. Since DT computations are CPU heavy, parallel computing, using Compute Unified Device Architecture (CUDA) available in Graphics Processing Unit (GPU), is used to accelerate the DT computation. The proposed solution is compared with the Kernel DM + V algorithm, presenting that the proposed method drastically improves the quality of GDM under various kernel sizes. The study is also further extended towards the effect of obstacles on gas source localization task. The outcome of this work proves that the proposed method shows better accuracy for GDM estimation and gas source localization if obstacle information is considered.1 -
PublicationA review of traditional and deep learning approaches for RGB-D face recognition( 2021-07-21)
;Shunmugam P.Abdullah A.N.One of the popularly explored topics for the past few decades in the field of artificial intelligence is face recognition. RGB-D picture-based face recognition has attracted numerous researcher's interest as it has more benefits compared with two-dimensional face recognitions. This review paper gives a brief review of RGB-D face recognition researches. First, this paper reviewed some of the RGB-D sensors available in the market and its specifications. After that, description and scope of face databases which are utilized to test the accuracy of these face recognition techniques are explored. Finally, this paper presents a summary of traditional techniques and deep learning techniques on RGB-D face recognitions.1 -
PublicationVision-Based Edge Detection System for Fruit Recognition( 2021-12-01)
;Tan S.H. ;Lam Chee Kiang ;Sneah G.K. ;Seng M.L. ;Hai T.P.Lye O.T.There are variety of fruits around the world, different types of fruits contain different types of nutrients and vitamins which could benefits our health. In order to understand which fruit can provide specific type of nutrients, we need to identify the types of fruits. However, fruits grow in a different shape, colour and texture based on the country they were planted and the environment of the land. Implementing a machine vision-based recognition on the fruits can help people recognize them easily. In this paper, an edge detection method is applied using computer vision approach to recognize different types of fruits. The fruits are classified based on the features extracted from their images. In the experiment, a total of 450 images of three types of fruit are used, which are apples, lemons and mangoes. Pre-processing steps are applied on the captured image to improve the quality of fruit details and the edge features are extracted using Canny Edge Detection method. Classification of the fruits is accomplished using two different types of learning model, the deep leaning model, Convolution Neural Network (CNN) and machine learning model, Support Vector Machines (SVM). The performance of both classifiers is compared and the model with the best performance, SVM is chosen as the model for the system. The system can achieve 86% classification accuracy with the SVM model, which is good enough for fruit recognition.1