Now showing 1 - 2 of 2
  • Publication
    Characterization and anti-bacterial potential of iron oxide nanoparticle processed eco-friendly by plant extract
    This research comprehends iron-oxide nanoparticle (IONP) production, the apparent metallic nanostructure with unique superparamagnetic properties. Durian-rind-extract was utilized to synthesize IONP and the color of reaction mixture becomes dark brown, indicated the formation of IONPs and the peak was observed at ∼330 nm under UV-visible spectroscopy. The morphological observation under high-resolution microscopies has revealed the spherical shape and the average size (∼10 nm) of IONP. The further support was rendered by EDX-analysis showing apparent iron and oxygen peaks. XRD results displayed the crystalline planes with (110) and (300) planes at 2θ of 35.73° and 63.53°, respectively. XPS-data has clearly demonstrated the presence of Fe2P and O1s peaks. The IONPs were successfully capped by the polyphenol compounds from durian-rind-extract as evidenced by the representative peaks between 1633 and 595 cm−1 from FTIR analysis. The antimicrobial potentials of IONPs were evidenced by the disk-diffusion assay. The obtained results have abundant attention and being actively explored owing to their beneficial applications.
  • Publication
    Electro-determination of protonation by tungsten anchored carbon nanoparticle on interdigitated gold electrode
    This study presented an enhanced sensitivity of sensing protons (H+) by anchoring tungsten to carbon nanoparticles (WCN) to encourage high current density on the surface of gold interdigitated electrode (AuIDE). The morphology of the sensor evidences the intactness of electrode surface and suitable for WCN modification. To elucidate the study, unmodified AuIDE was compared to the WCN modified surface. Current-volt analysis was compared with electrolyte scouting in the variation of pH by using a picoammater, which supplied 0.0 to 2.0 V with a 0.1 V ramp interval. It was shown that modified WCN gave the sensitivity in the acidic medium (protons) at the pH 4 with a current density value of 2.5 × 10-5 ampere and increased further with lowering the pH to more acidic. This is due to the fact that the tungsten carbon nanoparticle that is anchored offering more electron density and alters the behavior of the chip. Meanwhile, the current density displayed insignificant changes of current density amplification from pH 5 to 12 with the range of 5.91 × 10-9 to 7.36 × 10-8 Ampere. The deposition of WCN on the AuIDE surface chip revealed the successfulness of this nanoparticle in chemically linked with the AuIDE surface and how modified nanoparticle altered the behavior of the sensing element.