Now showing 1 - 3 of 3
  • Publication
    Influence of leachate matrix on oxidation performance of ozonation and aops
    Landfill leachate is a critical environmental issue that should be adequately treated to prevent it from spreading to the environment. This study explored the influence of raw leachate matrix and treated leachate matrix on O3, O3/H2O2, and O3/PS performance. O3 and AOPs were conducted in a laboratory-scale batch reactor. The findings showed the degradation of p-cresol, COD, and humic substances was much slower in treated leachate matrix than in raw leachate matrix. However, color was found easier to remove in treated leachate. The results revealed a synergic effect between molecular O3 and dissolved organic matter in the raw leachate as the O3 performance was enhanced in the presence of raw leachate matrix, except for color removal. The highest degradation of more than 90% was achieved in O3 /H2 O2 to remove COD, p-cresol, and humic substances, although it is the most affected by the leachate matrix. This study provides vital insight into the notable performance of O3 /PS in color removal regardless of the influence of leachate matrix, suggesting that the sulfate radical-induced oxidation outperformed O3 and O3 /H2 O2 in reducing nitrogen-containing compounds.
      1
  • Publication
    Tailoring the properties of calcium modified fibrous mesoporous silica KCC-1 for optimized sulfur dioxide removal
    ( 2022-01-01)
    Muhammad Adli Hanif
    ;
    ; ; ;
    Tuan Abdullah T.A.
    ;
    Jalil A.A.
    Dry regenerative flue gas desulfurization (FGD) is a promising method to tackle industrial issues regarding SO2 emission into the atmosphere due to its sorbent being highly accessible, the lack of water dependency and reduction in waste management. This study examined the feasibility of using fibrous mesoporous silica KCC-1 which has been reported to possess better properties than several other predecessor mesoporous silica as alternative sorbents for dry FGD. Calcium metal was introduced to overcome the lack of active sites available on KCC-1 while simultaneously providing sufficient basicity to counter the increase in acidity brought by SO2 adsorption. Three sorbent modification parameters were analyzed: metal loading (5–15 wt %), calcination temperature (823–973 K) and calcination time (5.5–7 h), and the prepared samples were characterized using BET surface area and pore analyzer, FESEM-EDX, XRD and H2-TPR. The breakthrough experiment was conducted using a lab scale fixed bed reactor system with 1500 ppm SO2/N2 at 200 mL/min. SO2 removal was optimized by sorbent prepared with calcium loading of 5 wt %, calcination temperature of 923 K and calcination time of 6.5 h with adsorption capacity of 3241.94 mg SO2/g KCC-1. The optimized sorbent demonstrated highest surface area, good pore development, high dispersion of calcium metal, appropriate impregnation of calcium oxide which caused only minor distortion to the silica framework of KCC-1. Subjecting the optimized sample to five consecutive regeneration cycles by heating at 773 K while simultaneously flowing N2 gas for an hour shows good regeneration performance with a total final reduction of only 25% from the initial adsorption capacity obtained from a fresh sample.
      1
  • Publication
    Influence of leachate matrix on oxidation performance of ozonation and aops
    Landfill leachate is a critical environmental issue that should be adequately treated to prevent it from spreading to the environment. This study explored the influence of raw leachate matrix and treated leachate matrix on O3, O3/H2O2, and O3/PS performance. O3 and AOPs were conducted in a laboratory-scale batch reactor. The findings showed the degradation of p-cresol, COD, and humic substances was much slower in treated leachate matrix than in raw leachate matrix. However, color was found easier to remove in treated leachate. The results revealed a synergic effect between molecular O3 and dissolved organic matter in the raw leachate as the O3 performance was enhanced in the presence of raw leachate matrix, except for color removal. The highest degradation of more than 90% was achieved in O3 /H2 O2 to remove COD, p-cresol, and humic substances, although it is the most affected by the leachate matrix. This study provides vital insight into the notable performance of O3 /PS in color removal regardless of the influence of leachate matrix, suggesting that the sulfate radical-induced oxidation outperformed O3 and O3 /H2 O2 in reducing nitrogen-containing compounds.
      1