Options
Lim Bee Ying
Preferred name
Lim Bee Ying
Official Name
Lim, Bee Ying
Alternative Name
Lim, B. Y.
Lim, Bee Y.
Main Affiliation
Scopus Author ID
57209532691
Researcher ID
DVB-1384-2022
Now showing
1 - 2 of 2
-
PublicationFabrication of polymethyl methacrylate composite films with silanized SiC nanoparticles( 2025-01)
;Mohamad Azrol Bin Azmi ; ; ;Phey Yee FoongThe properties of polymeric composites have often been altered with the incorporation of fillers. In this study, the poly(methyl methacrylate) (PMMA) was filled with silicon carbide nano-particles (SiC). The PMMA/SiC composite films were prepared through solution casting by using acetone as solvent. The different loading of SiC ranging from 0.25 wt% to 1.00 wt% were incorporated into the PMMA matrix. The effect of SiC loading and silane coupling agent on PMMA/SiC composite films in terms of mechanical, physical, and morphological properties was investigated. It was found that the increasing SiC loading and the silane treatment had increased the tensile strength and Young’s modulus but reduced the elongation at the break of PMMA/SiC composite films. At 0.75 wt% of silanized SiC, the tensile strength of the composite films was found to increase by 25 % from 30 to 37.5 MPa as compared to the virgin PMMA. Besides, the hardness of composite films was also increased with SiC loading and silane treatment. The presence of 1.00 wt% silanized SiC had increased 21.7% the hardness of the virgin PMMA, resulting in the increase of Shore A value from 69 to 84. By using silane treatment, better filler-matrix interaction was established as smoother fracture surfaces were observed through SEM micrographs and higher d-spacing was found in X-ray diffraction (XRD) patterns. The PMMA/SiC composite films prepared were suitable to be used in sporting goods, additive manufacturing, and environmental and protective coatings. -
PublicationDielectric properties and microwave absorbing properties of silicon carbide nanoparticles and silicon carbide nanowhiskers( 2023-04)
;Phey Yee Foong ; ; ; ; ; ; ; ;Yeng Seng Lee ;Silicon carbide (SiC) is well known for their outstanding microwave absorbing properties. SiC nanomaterials (SiCNMs) are expected to have better microwave absorption performance due to their high specific surface area. To date, no study was reported to compare the dielectric properties and microwave absorbing properties of different type of SiCNMs. Therefore, the objective of this paper is to compare the dielectric properties and microwave absorption properties of different types of SiCNMs. In this paper, SiC nanoparticles (SiCNPs) and SiC nanowhiskers (SiCNWs) were characterised using SEM and XRD. In addition, their dielectric properties and microwave absorbing properties were measured using network analyser and transmission line theory. It was found that SiCNWs achieved higher dielectric constant and loss factor which are and εr’ =17.94 and εr″ = 2.64 compared to SiCNPs that only achieved εr’ = 2.83 and εr″ = 0.71. For microwave absorbing properties, SiCNWs and SiCNPs attained minimum reflection loss of -10.41 dB and -6.83 dB at 5.68 GHz and 17.68 GHz, respectively. The minimum reflection loss of SiCNPs and SiCNWs obtained in this study is much lower than the nanometer-SiC reported previously. These results suggested that SiCNWs can be an ideal candidate of microwave susceptors for various microwave applications1 13