Now showing 1 - 2 of 2
  • Publication
    Design and evaluation of Magnetic Induction Spectroscopy probe for pH measurement in fetal hypoxia using COMSOL Multiphysics Simulation
    ( 2022-01-01)
    Siti Fatimah Abdul Halim
    ;
    Zakaria M.H.
    ;
    ;
    Aiman Abdulrahman Ahmed
    ;
    ; ;
    Jaysuman Bin Pusppanathan
    ;
    ;
    Siti Zarina Mohd Muji
    ;
    Ruzairi Abdul Rahim
    Fetal Blood Sampling (FBS) is the term used to describe the current method of monitoring the foetal condition within the mother’s womb. FBS required the medical officer to make a small incision on the foetus’s head in order to collect blood for analysis of the blood pH level in order to prevent acidosis or foetal hypoxia. The FBS method, on the other hand, is invasive and increases the risk of infection for both mother and child. Magnetic Induction Spectroscopy (MIS) is a novel method for diagnosing the foetus’s pH level that is non-invasive and non-intrusive. A single channel MIS system is composed of a transmitter (TX), a receiver (RX), and an electrical circuit that generates and receives magnetic fields in response to the conductivity of the sample (blood) due to the presence of weak electrolytes (H+ and OH-). The purpose of this research is to develop and evaluate five different designs of TX-RX coils. The coils are designed using the Planar Zero Flow Coil (PZFC) concept, which allows for multiple coil configurations and input-output configurations. The results show that Design 2 open set model was the optimal coil design for MIS system probe, as well as some contributions to the pH evaluation process.
      5  7
  • Publication
    A comprehensive review of the recent developments in wearable Sweat-Sensing Devices
    ( 2022-10-01)
    Nur Fatin Adini Ibrahim
    ;
    ; ;
    Asrulnizam Abd Manaf
    ;
    Asnida Abdul Wahab
    ;
    ;
    Sweat analysis offers non-invasive real-time on-body measurement for wearable sensors. However, there are still gaps in current developed sweat-sensing devices (SSDs) regarding the concerns of mixing fresh and old sweat and real-time measurement, which are the requirements to ensure accurate the measurement of wearable devices. This review paper discusses these limitations by aiding model designs, features, performance, and the device operation for exploring the SSDs used in different sweat collection tools, focusing on continuous and non-continuous flow sweat analysis. In addition, the paper also comprehensively presents various sweat biomarkers that have been explored by earlier works in order to broaden the use of non-invasive sweat samples in healthcare and related applications. This work also discusses the target analyte’s response mechanism for different sweat compositions, categories of sweat collection devices, and recent advances in SSDs regarding optimal design, functionality, and performance.
      4  2