Options
Abdul Syafiq Abdull Sukor
Preferred name
Abdul Syafiq Abdull Sukor
Official Name
Abdull Sukor, Abdul Syafiq
Alternative Name
Abdull Sukor, Abdul Syafiq
Sukor, Abdul Syafiq Abdull
Sukor, Abdul Syafiq Bin Abdull
Abdull Sukor, A. S.
Sukor, A. S.A.
Main Affiliation
Scopus Author ID
57209073616
Researcher ID
L-8520-2019
Now showing
1 - 8 of 8
-
PublicationInvestigation of Different Classifiers for Stress Level Classification using PCA-Based Machine Learning Method( 2023-01-01)
;Mazlan M.R.B. ;Jamaluddin R.B.Undergraduate students experience several changes and face various problems during their time transitioning from adolescence to adulthood. One of the issues during this time is a mental stress disorder. Stress burdens the students either through mental or physical capabilities. The common method of determining stress includes physical examination and clinical diagnosis. However, the method is subjective and time-consuming as doctors need to make sure that their diagnosis is accurate. Thus, the severity of the stress stages could not be easily determined. A new method using machine learning-based algorithms coupled with EEG devices promises to overcome the issues with the current approaches. This paper presents an investigation using machine learning techniques based on Principal Component Analysis (PCA) which allows for the reduction in the dimensionality of datasets to enhance their interpretability while minimizing information loss. The pre-processed EEG data and PCA-based EEG data were compared and analyzed using three machine learning classifiers such as K-Nearest Network (KNN), Naive Bayes (NB) and Multilayer Perceptron (MLP). The results indicate that KNN demonstrated the highest average classification accuracy of 99%, while the other approaches mentioned above averaged around 50% and 80% for NB and MLP respectively. This investigation shows that the KNN classifier is most suitable for the proposed approach.1 -
PublicationPredictive Analysis of In-Vehicle Air Quality Monitoring System Using Deep Learning Technique( 2022-10-01)
;Cheik Goh Chew ;Mao Xiaoyang ;Nishizaki H.In-vehicle air quality monitoring systems have been seen as promising paradigms for monitoring drivers’ conditions while they are driving. This is because some in-vehicle cabins contain pollutants that can cause drowsiness and fatigue to drivers. However, designing an efficient system that can predict in-vehicle air quality has challenges, due to the continuous variation in parameters in cabin environments. This paper presents a new approach, using deep learning techniques that can deal with the varying parameters inside the vehicle environment. In this case, two deep learning models, namely Long-short Term Memory (LSTM) and Gated Recurrent Unit (GRU) are applied to classify and predict the air quality using time-series data collected from the built-in sensor hardware. Both are compared with conventional methods of machine learning models, including Support Vector Regression (SVR) and Multi-layer Perceptron (MLP). The results show that GRU has an excellent prediction performance with the highest coefficient of determination value (R2) of 0.97.3 1 -
PublicationPattern Clustering Approach for Activity Recognition in Smart Homes( 2022-01-01)Wahab M.N.A.In recent years, studies in activity recognition have shown an increasing amount of attention among other researchers. Activity recognition is usually performed through two steps: activity pattern clustering and classification processes. Clustering allows similar activity patterns to be grouped together while classification provides a decision-making process to infer the right activity. Although many related works have been suggested in these areas, there is some limitation as most of them are focused only on one part of these two processes. This paper presents a work that combines pattern clustering and classification into one single framework. The former uses the Self Organizing Map (SOM) to cluster activity data into groups while the latter utilizes semantic activity modelling to infer the right type of activity. Experimental results show that the combined method provides higher recognition accuracy compared to the traditional method of machine learning. Furthermore, it is more appropriate for a dynamic environment of human living.
1 -
PublicationPattern Clustering Approach for Activity Recognition in Smart Homes( 2022-01-01)Wahab M.N.A.In recent years, studies in activity recognition have shown an increasing amount of attention among other researchers. Activity recognition is usually performed through two steps: activity pattern clustering and classification processes. Clustering allows similar activity patterns to be grouped together while classification provides a decision-making process to infer the right activity. Although many related works have been suggested in these areas, there is some limitation as most of them are focused only on one part of these two processes. This paper presents a work that combines pattern clustering and classification into one single framework. The former uses the Self Organizing Map (SOM) to cluster activity data into groups while the latter utilizes semantic activity modelling to infer the right type of activity. Experimental results show that the combined method provides higher recognition accuracy compared to the traditional method of machine learning. Furthermore, it is more appropriate for a dynamic environment of human living.
1 -
PublicationPredictive Analysis of In-Vehicle Air Quality Monitoring System Using Deep Learning Technique( 2022-10-01)
;Cheik Goh Chew ;Mao X. ;Nishizaki H.In-vehicle air quality monitoring systems have been seen as promising paradigms for monitoring drivers’ conditions while they are driving. This is because some in-vehicle cabins contain pollutants that can cause drowsiness and fatigue to drivers. However, designing an efficient system that can predict in-vehicle air quality has challenges, due to the continuous variation in parameters in cabin environments. This paper presents a new approach, using deep learning techniques that can deal with the varying parameters inside the vehicle environment. In this case, two deep learning models, namely Long-short Term Memory (LSTM) and Gated Recurrent Unit (GRU) are applied to classify and predict the air quality using time-series data collected from the built-in sensor hardware. Both are compared with conventional methods of machine learning models, including Support Vector Regression (SVR) and Multi-layer Perceptron (MLP). The results show that GRU has an excellent prediction performance with the highest coefficient of determination value (R2) of 0.97.2 -
PublicationDevelopment of In-situ Sensing System and Classification of Water Quality using Machine Learning Approach( 2022-01-01)
;Mohamad Naim MuhamadAb Wahab M.N.Quality of water applied to the agriculture sector is one of the factors for agriculture farming to be successful. The use of bad quality irrigation water can cause soil problems. In general, determining water quality model is one of the many interests as it can be used to classify the conditions of water. This project focuses on developing the in-situ sensing system of water quality sensors that can detect parameters of water quality such as pH level, electric conductivity, temperature and total dissolved solid. To validate the approach, there are three types of water samples in a dataset that was collected which include water pipes, soap water and drain water. The types of machine learning models used for classification process are Artificial Neural Network (ANN), Support Vector Machine (SVM), and Decision Tree. The performance showed that SVM model was the highest, ANN was intermediate, and Decision Tree was the lowest. This shows that the SVM model of machine learning approach is the most suitable to be used as the classification model to classify the status of water quality.1 -
PublicationPredictive Analysis of In-Vehicle Air Quality Monitoring System Using Deep Learning Technique( 2022-10-01)
;Cheik Goh Chew ;Mao X. ;Nishizaki H.In-vehicle air quality monitoring systems have been seen as promising paradigms for monitoring drivers’ conditions while they are driving. This is because some in-vehicle cabins contain pollutants that can cause drowsiness and fatigue to drivers. However, designing an efficient system that can predict in-vehicle air quality has challenges, due to the continuous variation in parameters in cabin environments. This paper presents a new approach, using deep learning techniques that can deal with the varying parameters inside the vehicle environment. In this case, two deep learning models, namely Long-short Term Memory (LSTM) and Gated Recurrent Unit (GRU) are applied to classify and predict the air quality using time-series data collected from the built-in sensor hardware. Both are compared with conventional methods of machine learning models, including Support Vector Regression (SVR) and Multi-layer Perceptron (MLP). The results show that GRU has an excellent prediction performance with the highest coefficient of determination value (R2) of 0.97.3 -
PublicationPattern Clustering Approach for Activity Recognition in Smart Homes( 2022-01-01)Wahab M.N.A.In recent years, studies in activity recognition have shown an increasing amount of attention among other researchers. Activity recognition is usually performed through two steps: activity pattern clustering and classification processes. Clustering allows similar activity patterns to be grouped together while classification provides a decision-making process to infer the right activity. Although many related works have been suggested in these areas, there is some limitation as most of them are focused only on one part of these two processes. This paper presents a work that combines pattern clustering and classification into one single framework. The former uses the Self Organizing Map (SOM) to cluster activity data into groups while the latter utilizes semantic activity modelling to infer the right type of activity. Experimental results show that the combined method provides higher recognition accuracy compared to the traditional method of machine learning. Furthermore, it is more appropriate for a dynamic environment of human living.
3 1