Options
Shayfull Zamree Abd. Rahim
Preferred name
Shayfull Zamree Abd. Rahim
Official Name
Shayfull Zamree, Abd. Rahim
Alternative Name
Shayfull, Zamree Abd Rahim
Abd Rahim, Shayfull Zamree Abd
Shayfull, Zamree
Abd Rahim, S. Z.
Abd Rahim, Shayfull Zamree Bin
Bin Abd Rahim, S. Zamree
Abd Rahim, S.
zamree bin abd Rahim, Shayfull
Rahim, Shayfull Zamree Abd
Zamree Abd Rahim, Shayfull
Zambree, Shayfull
Rahim, Shayfull Z.B.Abd
Zamree, A. R.Shayfull
Shayfull, Z.
Main Affiliation
Scopus Author ID
54941291700
Researcher ID
I-2840-2019
Now showing
1 - 10 of 133
-
PublicationOptimisation of warpage on plastic injection moulding part using response surface methodology (RSM) and genetic algorithm method (GA)( 2017-09-26)
;Miza A.T.N.A.In this study, Computer Aided Engineering was used for injection moulding simulation. The method of Design of experiment (DOE) was utilize according to the Latin Square orthogonal array. The relationship between the injection moulding parameters and warpage were identify based on the experimental data that used. Response Surface Methodology (RSM) was used as to validate the model accuracy. Then, the RSM and GA method were combine as to examine the optimum injection moulding process parameter. Therefore the optimisation of injection moulding is largely improve and the result shown an increasing accuracy and also reliability. The propose method by combining RSM and GA method also contribute in minimising the warpage from occur. -
PublicationDiverse material based geopolymer towards heavy metals removal : a review( 2023)
;Pilomeena Arokiasamy ;Monower Sadique ;Mohd Remy Rozainy Mohd Arif ZainolChe Mohd Ruzaidi GhazaliMetakaolin is a commonly used aluminosilicate material for the synthesis of geopolymer based adsorbent. However, it presents characteristics that restrict its uses such as weak rheological properties brought on by the plate-like structure, processing challenges, high water demand and quick hydration reaction. Industrial waste, on the other hand, contains a variety of components and is a potential source of aluminosilicate material. Geopolymer adsorbent synthesized by utilizing industrial waste contains a wide range of elements that offer better ion-exchangeability and increase active sites on the surface of geopolymer. However, limited studies focused on the synthesized of geopolymer based adsorbent by utilizing industrial waste for heavy metal adsorption in wastewater treatment. Therefore, this paper reviews on the raw materials used in the synthesis of geopolymer for wastewater treatment. This would help in the development of low cost geopolymer based adsorbent that has a great potential for heavy metal adsorption, which could deliver double benefit in both waste management and wastewater treatment. -
PublicationThe improvement of assembly process and environmental impact using the integration of DFMA and sustainable design analysis approach: Case study of spotlight( 2021-07-21)
;Ahmad S.A.S. ;Muslim M.M. ;Sharifhudin M.A. ;Khiruzzaki K.F.Nordin N.This investigation analyses spotlight components to reduce the necessary amount and explore the potential to enhance the sustainable design. The DFMA and Sustainability design considerations for manufacturing assemblies were used and incorporated in this work. DFMA outcome displays that components were reduced while the LCA showed that weight, carbon footprint, acidification of the air, water eutrophication and overall energy consumption were reduced. This new approach is essential for demonstrating the efficiency of both tools used to reduce the cost of spotlight manufacture and enhance the sustainable aspects of product design. -
PublicationContribution of interfacial bonding towards geopolymers properties in geopolymers reinforced fibers: a review( 2022)
;Muhd Hafizuddin Yazid ;Marcin Nabiałek ;Marwan Kheimi ;Andrei Victor Sandu ;Adam RylskiBartłomiej JeżThere is a burgeoning interest in the development of geopolymers as sustainable construction materials and incombustible inorganic polymers. However, geopolymers show quasi-brittle behavior. To overcome this weakness, hundreds of researchers have focused on the development, characterization, and implementation of geopolymer-reinforced fibers for a wide range of applications for light geopolymers concrete. This paper discusses the rapidly developing geopolymer-reinforced fibers, focusing on material and geometrical properties, numerical simulation, and the effect of fibers on the geopolymers. In the section on the effect of fibers on the geopolymers, a comparison between single and hybrid fibers will show the compressive strength and toughness of each type of fiber. It is proposed that interfacial bonding between matrix and fibers is important to obtain better results, and interfacial bonding between matrix and fiber depends on the type of material surface contact area, such as being hydrophobic or hydrophilic, as well as the softness or roughness of the surface. -
PublicationImplementation of DFMA and FEA method as a combination approach in sustainable design: A case study of hair dryer design( 2021-05-03)
;Rahman M.G.A. ;Ahmad S.A.S. ;Asri M.A. ;Tamizi N.S.M. ;Haris N.A.M.Zawawi S.A.This study aims to analyse the components of the hairdryer to 1ecogniz the quantities or improvements in the features of the components involved, and it is necessary to study possible sustainable design improvements. Thus, it is implementing Design for Manufacturing (DFMA) and Life Cycle Analysis (LCA) approach to assist sustainability analysis. The results from a product survey of consumers found that 75% of consumers are from women while the rest are men who use hair dryers. Therefore, people in the 18-30 years old prefer to use the hairdryer when while 18.8% of users often keep the hair dryer on the makeup table and 12.5% of users keep the makeup drawer to look neat. While the results of sustainability study on hair dryer products have found that before analysis using PP Copolymer material there was a good impact on the product analysis in terms of Material Unit Cost of 2.80 USD / kg compared to previous use of ABS material of 2.90 USD / kg. While in terms of Material Financial Impact from the use of PP Copolymer there was a decrease of 0.20 USD compared to material abs usage of 1752.00 USD. In terms of weight the hairdryer has also experienced a weight reduction of 70.05 g to 60.04 g. But in terms of duration of use still the same period of the application for a year and also in term transportation still remain the same as truck distance 1600 km. The surface area of the product also decreased from 76268.30 mm2 to 74199.49 mm2. The methods used for hair dryer production are finite element analysis and sustainability analysis.. -
PublicationOptimisation of shrinkage and strength on thick plate part using recycled LDPE materials( 2021)
;Norshahira Roslan ;Abdellah El-hadj Abdellah ;Katarzyna Błoch ;Paweł Pietrusiewicz ;Marcin Nabiałek ;Janusz Szmidla ;Dariusz Kwiatkowski ;Joel Oliveira Correia VascoAchieving good quality of products from plastic injection moulding processes is very challenging, since the process comprises many affecting parameters. Common defects such as warpage are hard to avoid, and the defective parts will eventually go to waste, leading to unnecessary costs to the manufacturer. The use of recycled material from postindustrial waste has been studied by a few researchers. However, the application of an optimisation method by which to optimise processing parameters to mould parts using recycled materials remains lacking. In this study, Response Surface Methodology (RSM) and Particle Swarm Optimisation (PSO) methods were conducted on thick plate parts moulded using virgin and recycled low-density polyethylene (LDPE) materials (100:0, 70:30, 60:40 and 50:50; virgin to recycle material ratios) to find the optimal input parameters for each of the material ratios. Shrinkage in the x and y directions increased in correlation with the recycled ratio, compared to virgin material. Meanwhile, the tensile strength of the thick plate part continued to decrease when the recycled ratio increased. R30 (70:30) had the optimum shrinkage in the x direction with respect to R0 (100:0) material where the shrinkage increased by 24.49% (RSM) and 33.20% (PSO). On the other hand, the shrinkage in the y direction for R30 material increased by 4.48% (RSM) and decreased by 2.67% (PSO), while the tensile strength of R30 (70:30) material decreased by 0.51% (RSM) and 2.68% (PSO) as compared to R0 (100:0) material. Validation tests indicated that the optimal setting of processing parameter suggested by PSO and RSM for R0 (100:0), R30 (70:30), R40 (60:40) and R50 (50:50) was less than 10%. -
PublicationWarpage optimisation using recycled Polycar-bonates (PC) on front panel housing( 2021)
;Nur Aisyah Miza Ahmad Tamizi ;Abdellah El-hadj Abdellah ;Marcin Nabiałek ;Jerzy J. Wysłocki ;Bartłomiej Jeż ;Paweł Palutkiewicz ;Rozyanty Abdul RahmanMany studies have been done using recycled waste materials to minimise environmental problems. It is a great opportunity to explore mechanical recycling and the use of recycled and virgin blend as a material to produce new products with minimum defects. In this study, appropriate processing parameters were considered to mould the front panel housing part using R0% (virgin), R30% (30% virgin: 70% recycled), R40% (40% virgin: 60% recycled) and R50% (50% virgin: 50% recycled) of Polycarbonate (PC). The manufacturing ability and quality during preliminary stage can be predicted through simulation analysis using Autodesk Moldflow Insight 2012 software. The recommended processing parameters and values of warpage in x and y directions can also be obtained using this software. No value of warpage was obtained from simulation studies for x direction on the front panel housing. Therefore, this study only focused on reducing the warpage in the y direction. Response Surface Methodology (RSM) and Genetic Algorithm (GA) optimisation methods were used to find the optimal processing parameters. As the results, the optimal ratio of recycled PC material was found to be R30%, followed by R40% and R50% materials using RSM and GA methods as compared to the average value of warpage on the moulded part using R0%. The most influential processing parameter that contributed to warpage defect was packing pressure for all materials used in this study. -
PublicationHydroxyapatite incorporated metakaolin/sludge based geopolymer adsorbent for copper ions and ciprofloxacin removal : Synthesis, characterization and mechanisms( 2024)
;Pilomeena Arokiasamy ;Andrei Victor Sandu ;Anna Fedrigo ;Ratna Ediati ;Shafiq IshakNoor Haida Mohd KausThe efficacy of copper Cu(II) adsorption is significantly affected by the presence of antibiotics, such as ciprofloxacin (CIP). Therefore, researchers are highly interested in conducting extensive investigations on the simultaneous adsorption of Cu(II) and CIP. However, most of the adsorbents exhibited low adsorption capacity of CIP with increasing Cu(II) concentration due to the competition for adsorption sites. Hence, the integration of various adsorbents into a single composite could be an effective way to increase the adsorption sites. Thus, this study aims to incorporate hydroxyapatite (Hap) into metakaolin/sludge based geopolymer adsorbent for simultaneous adsorption of Cu(II) and CIP. The effect of different filler loading of Hap (1–3 %) on the metakaolin/sludge geopolymerization and also on the removal efficiency of Cu(II) and CIP were studied in a single and binary system. Moreover, the effects of varied concentrations of Cu(II) (0–100 mg/L) on the removal efficiency of CIP were investigated. Characterization techniques such as x-ray diffraction (XRD), fourier-transform infrared spectrometry (FTIR), scanning electron microscopy (SEM), brunauer-emmett-teller (BET) and neutron tomography imaging were employed to characterize the physicochemical properties of the synthesized geopolymer. It was found that the Hap content has a significant impact on the removal efficiency of CIP and Cu(II). The addition of 2 % Hap providing more nucleation site for the increasing geopolymerization (C-A-S-H) and silicoalumino phosphate gel (SAP) leading to the formation of highly cross-linked geopolymer network and abundant active sites which would favour the adsorption. Moreover, the removal efficiency of CIP by 2 % Hap-geopolymer increased (25.6 % to 61.51 %) with increasing Cu(II) concentration by the complexation and bridging effect between Cu(II) and CIP resulting in the formation of GMK25S1-2Hap-Cu(II)-CIP complexes. Therefore, the hybrid method of geopolymer and Hap is an exceptionally efficient approach for the treatment of wastewater that comprises Cu(II) and CIP. -
PublicationMetakaolin/sludge based geopolymer adsorbent on high removal efficiency of Cu2+( 2022)
;Pilomeena Arokiasamy ;Mohd Remy Rozainy Mohd Arif Zainol ;Marwan Kheimi ;Andrei Victor Sandu ;Petrica Vizureanu ;Rafiza Abdul RazakActivated carbon (AC) has received a lot of interest from researchers for the removal of heavy metals from wastewater due to its abundant porous structure. However, it was found unable to meet the required adsorption capacity due to its amorphous structure which restricts the fundamental studies and structural optimization for improved removal performance. In addition, AC is not applicable in large scale wastewater treatment due its expensive synthesis and difficulty in regeneration. Thus, the researchers are paying more attention in synthesis of low cost geopolymer based adsorbent for heavy metal removal due its excellent immobilization effect. However, limited studies have focused on the synthesis of geopolymer based adsorbent for heavy metal adsorption by utilizing industrial sludge. Thus, the aim of this research was to develop metakaolin (MK) based geopolymer adsorbent with incorporation of two types of industrial sludge (S1 and S3) that could be employed as an adsorbent for removing copper (Cu²⁺) from aqueous solution through the adsorption process. The effects of varied solid to liquid ratio (S/L) on the synthesis of metakaolin/sludge based geopolymer adsorbent and the removal efficiency of Cu²⁺ by the synthesis adsorbent were studied. The raw materials and synthesized geopolymer were characterized by using x-ray fluorescence (XRF), x-ray diffraction (XRD), scanning electron microscope (SEM), fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET) and micro XRF. The concentration of Cu²⁺ before and after adsorption was determined by atomic absorption spectroscopy (AAS) and the removal efficiency was calculated. The experimental data indicated that the synthesized geopolymer at low S/L ratio has achieved the highest removal efficiency of Cu²⁺ about 99.62% and 99.37% at 25%:75% of MK/S1 and 25%:75% of MK/S3 respectively compared to pure MK based geopolymer with 98.56%. The best S/L ratio for MK/S1 and MK/S3 is 0.6 at which the reaction between the alkaline activator and the aluminosilicate materials has improved and enhanced the geopolymerization process. Finally, this work clearly indicated that industrial sludge can be utilized in developing low-cost adsorbent with high removal efficiency -
PublicationWarpage optimisation on the moulded part with straight drilled and conformal cooling channels using Response Surface Methodology (RSM), Glowworm Swarm Optimisation (GSO) and Genetic Algorithm (GA) optimisation approaches( 2021)
;Joanna Gondro ;Safian Sharif ;Azlan Mohd Zain ;Abdellah El-hadj Abdellah ;Jerzy J. WysłockiMarcin NabiałekIt is quite challenging to control both quality and productivity of products produced using injection molding process. Although many previous researchers have used different types of optimisation approaches to obtain the best configuration of parameters setting to control the quality of the molded part, optimisation approaches in maximising the performance of cooling channels to enhance the process productivity by decreasing the mould cycle time remain lacking. In this study, optimisation approaches namely Response Surface Methodology (RSM), Genetic Algorithm (GA) and Glowworm Swarm Optimisation (GSO) were employed on front panel housing moulded using Acrylonitrile Butadiene Styrene (ABS). Each optimisation method was analysed for both straight drilled and Milled Groove Square Shape (MGSS) conformal cooling channel moulds. Results from experimental works showed that, the performance of MGSS conformal cooling channels could be enhanced by employing the optimisation approach. Therefore, this research provides useful scientific knowledge and an alternative solution for the plastic injection moulding industry to improve the quality of moulded parts in terms of deformation using the proposed optimisation approaches in the used of conformal cooling channels mould.