Options
Sam Sung Ting
Preferred name
Sam Sung Ting
Official Name
Sam, Sung Ting
Alternative Name
Sam, Sung Ting
Sung Ting, Sam
Tingf, Sam Sung
Ting, Sam Sung
Sam, S. T.
Sam, T. S.
Main Affiliation
Scopus Author ID
57198446841
Researcher ID
AAU-8590-2020
Now showing
1 - 2 of 2
-
PublicationEvaluation of various lignocellulosic biomass and cereal grains as potential spawn materials for wild Schizophyllum commune cultivation( 2020-12-18)
;Nurfatirah N.Azhar M.Rapid mycelium growth in spawn production and on growth substrate could suppress contamination, which is significant in mushroom industry. The aim of the study is to investigate the potential of lignocellulosic biomass waste as new materials alternative to common cereal grains in producing spawn for wild S. commune cultivation on rice husk, paddy straw, and rubber wood sawdust. The fastest mycelium growth among lignocellulosic biomass was found on rice husk spawn (1.27 cm/day) and 1.98 cm/day for wheat grain. The shortest duration for substrate colonization for both lignocellulosic and grain spawn is on paddy straw, followed by rice husk, and rubber wood sawdust. -
PublicationMechanical and dielectric properties of hybrid carbon nanotubes-woven glass fibre reinforced epoxy laminated composites via the electrospray deposition method( 2022-01-01)
;Muhammad Razlan Zakaria ;Nur Aishahatul Syafiqa Khairuddin ;Akil H.M. ;Othman M.B.H.Herein, the effects of multi-walled carbon nanotubes (CNTs) on the mechanical and dielectric performance of hybrid carbon nanotube-woven glass fiber (GF) reinforced epoxy laminated composited are investigated. CNTs are deposited on woven GF surface using an electrospray deposition method which is rarely reported in the past. The woven GF deposited with CNT and without deposited with CNT are used to produce epoxy laminated composites using a vacuum assisted resin transfer moulding. The tensile, flexural, dielectric constant and dielectric loss properties of the epoxy laminated composites were then characterized. The results confirm that the mechanical and dielectric properties of the woven glass fiber reinforced epoxy laminated composited increases with the addition of CNTs. Field emission scanning electron microscope is used to examine the post damage analysis for all tested specimens. Based on this finding, it can be prominently identified some new and significant information of interest to researchers and industrialists working on GF based products.1