Now showing 1 - 9 of 9
  • Publication
    Influence of superplasticizer on performance of cement - Bottom ash concrete
    The issue related to disposing waste material from industries has become one of the major environmental, economic and social problems. However, natural resources consumed worldwide, while at the same time increased amount and type of the waste material has resulted in waste disposal crisis with a growing consumer population. Therefore, the solution to this crisis is recycling waste into useful materials. In this project, Municipal Solid Waste Incineration (MSWI) by product which is bottom ash is used as partial replacement in cement. However, its properties as water absorbent become the issue for concrete strength. This research paper is to investigate the influence of superplasticizer on performance of cement-bottom ash concrete and designed for strength of 20 MPa at 28 days will be evaluated for its early stage properties. Superplasticizer is used to reduce water in cement while keeping up a consistent workability. The percentage of replacement in cement is by 0% (control), 10% and also 10%, 20% and 30% with addition of 0.30% by weight of cement of superplasticizer. In order to achieve the objective, few tests were carried out including slump test, density test, water absorption test and compression test. The result of this research indicates that 10% of replacement of bottom ash with superplasticizer shows highest compressive strength with 33.215 MPa with density 2417 kg/m3, water absorption of 1.41% and 122 mm for slump loss at 28 days. This study proved that the addition of superplasticizer can increase the workability and strength of concrete containing bottom ash as replacement for cement.
  • Publication
    Effect of bottom ash and limestone on the optimum binder content in Hot Mix Asphalt (HMA)
    ( 2022-01-01) ; ;
    Noor Aina Misnon
    ;
    Nurhidayah Hamzah
    ;
    ; ;
    Christina Remmy Entalai
    ;
    Deák György
    One of the most effective and simplest methods to minimize waste as well as reduce the environmental problems associated with waste disposal is by utilizing waste materials as a cement replacement in hot mix asphalt (HMA) mixtures which can provide the same or better stability as the conventional method. Fillers play an important role in the stability and strength of the pavement by filling voids between the aggregate particles in the performance of the HMA mixture. This research investigated the effect of the utilization of different types of filler (bottom ash and limestone) on the optimum binder content of HMA. Flow, stability, stiffness, air void in mix (VIM) and void filled with bitumen (VFB) were determined using the Marshal Method test in order to determine the optimum binder content of HMA for all mineral filler. The results of the Marshall test for each filler have been compared with the JKR standard specification. The optimum binder content for bottom ash, limestone and Ordinary Portland Cement (OPC) was 5.42%, 5.65% and 5.54%, respectively. All values of mineral filler used meet the JKR standard specification, where the range is between 4 and 6%. From the result achieved, the bottom ash has the lower optimum binder content value compared to the limestone and OPC. When the lower binder content is used in the bituminous mixture, the cost for pavement construction will be reduced.
  • Publication
    Workability and density of concrete containing Coconut Fiber
    Use of natural fiber in concrete to enhance the strength of concrete have been used widely and become as part of an alternative building materials. For instance, the use of coconut fiber (CF) which are non-hazardous, environmental-friendly and can improves the engineering properties of concrete. The aim of this study is to identify the workability and density of CF modified concrete. CF were added into the mixture in 3 different amount that is 200 g, 400 g, and 600 g. The size of the cube samples is 100 × 100 × 100 mm and were cured for 14 days, and 28 days. To evaluate the effect of CF in improving the properties of concrete, the properties of ordinary concrete are used as a reference which consist 0% CF. The fresh and hardened densities for all samples also show that when more fiber was added into mixture, densities reduced. As summary, the study shows that by adding CF in concrete reduced the workability and density of concrete.
  • Publication
    A Comprehensive Evaluation of Pozzolanic Activity of Ancient Brick Powders Wastes—BPW in Cement Based Materials
    ( 2022-01-01)
    Moncea Mihaela-Andreea
    ;
    Deák G.
    ;
    Dumitru F.D.
    ;
    ;
    The recovery potential of bricks wastes in obtaining environmental friendly materials is sustained by their pozzolanic properties, which can be exploited within a Portland cement—brick powder waste (BPW) system, thus reducing the amount of waste as well as the consumption of raw materials and CO2 emissions from cement factories. These properties were intensively studied and reported in the literature, for their assessment often being used direct analytical methods to highlight the presence of Ca(OH)2 and its subsequent reduction in abundance with time as the pozzolanic reaction proceeds. Since it is more difficult to quantify the pozzolanic activity of calcined clay in a Portland cement /brick powder mixture, for the present work classical determinations, such as thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM) were combined with the individual assessment of BPW in terms of pozzolanicity in order to study the variation of the Ca2+ respectively OH− ions concentration within a BWP—lime saturated solution. SEM analyses showed CH and CSH formation and the DTA curve highlighted a more intense peak around 500 °C after 28 days of hydration, where the Ca(OH)2 decomposition take place. The pozzolanicity test results showed a pronounced decrease of Ca2+ concentration after 28 days.
  • Publication
    A Properties of Municipal Solid Waste Incineration Fly Ash (IFA) And Cement Used in The Manufacturing of New Inventive Blended Cement
    ( 2022-01-01) ; ; ;
    Izzatul Nurain Che Sang Beri
    ;
    ;
    Zailani W.W.A.
    Municipal solid waste incinerator fly (IFA) ash is prone to accumulate high concentration heavy metals. Due to the increasing costs to treat remaining fly ash at the landfill, a lot of research has been done to recycle IFA. This study was focusing on the properties of IFA and cement as main raw materials in new inventive blended cement. The properties of blended cement were also being investigated. Properties of IFA and cement were examined through several test which includes density, specific gravity, X-Ray Fluorescence (XRF), Loss of Ignition (LOI) and through Toxicity Characteristic Leaching Procedure (TCLP) test. The density test and LOI test were also being done for the blended cement. From the tests for IFA and cement, it can be found that density the density of fly ash and cement that has been used for this study were found to be 0.76 g/cm3 and 3.67 g/cm3 respectively. Then, the specific gravity of fly ash and cement were 1.69 and 2.98, accordingly. XRF results shows that both materials have highest content of aluminium, silica and iron, as expected. LOI of fly ash and cement were found to be 17.33 % and 12.33 %, respectively. In terms of the leaching rates of heavy metals (Mn, Ni, Cd, Cr, Cu), only Cd leached at rate 2.39 mg/L, which is above the USEPA's regulatory level, 1.0 mg/L. 5 %, 10 % and 15 % of IFA was mixed with cement to produced blended cement. As the density of blended cement, it was found to be 1.12 g/cm3, 1.08 g/cm3 and 1.09 g/cm3 for each of 5 %, 10 % and 15 % of fly ash in blended cement.
  • Publication
    Reclamation and Reutilization of Incinerator Ash in Artificial Lightweight Aggregate
    This study focused on the reclamation of ash from incineration process and development of new artificial lightweight aggregate (LWA) that have comparable properties with existing natural coarse aggregate. The main objective of this study is to examine potential use of recycled municipal solid waste incineration (MSWI) ash as raw material in LWA production with a method of cold-bonded pelletization. Two types of incineration ash which is bottom ash (BA) and fly ash (FA) were collected from Cameron Highland Incineration Plant, Malaysia. The properties of BA and FA are studied by means of X-Ray Fluorescence (XRF) and microstructure of these ashes were inspected using Scanning Electron Microscope (SEM). The properties of BALA and FALA produced in this study is examined including loose bulk density, water absorption and aggregate impact value (AIV). From the results of both types of artificial LWA, the lowest loose bulk density of BALA is BALA50 with 564.14 kg/m3and highest is at 831.19 kg/m3. For FALA50, lowest loose bulk density is 573.64 kg/m3and highest is 703.35 kg/m3. Water absorption of BALA and FALA is quite similar with one another in with the value of 23.8% and 22.6%, respectively. Generally, FALA have better qualities of LWA comparing with BALA with lower bulk density and water absorption and can be categorized as strong aggregate. In summary, reclamation and reutilization of incinerator ash has generated acceptable qualities for artificial LWA. Both types of BA and FA shown a great potential to be recycled as additional materials in artificial aggregate production.
  • Publication
    Comparing the Physical Properties of Coal Bottom Ash (CBA) Waste and Natural Aggregate
    ( 2022-01-01) ;
    Mohamed Reyad Alhadi Ahmad
    ;
    ; ; ;
    Samsudin S.
    Coal bottom ash (CBA) is a co-combustion product material, which may cause hazards to human health and the environment. Rapid growth in technology causes the increase of CBA waste and this situation led to a waste disposal crisis. Reuse waste material as an alternative material instead of natural materials can led to sustainable and environmentally friendly construction. The main objective of this study is to determine the physical properties of CBA and its suitability to be used as replacement material in civil construction. The physical properties test conducted in this research were aggregate impact value test, aggregate crushed value test, flakiness and elongation test. The results show that the ability of CBA to resist sudden shock and repeated load was lesser than natural aggregate (NA). The differences of aggregate impact value (AIV) and aggregate crushing value (ACV), between NA and CBA were 50.4% and 48.9%, respectively. In addition, CBA has higher amount of flaky and elongated particles compared to NA. The flakiness index value for NA and CBA were 7.12% and 26.10%, respectively while the difference value of elongation index between NA and CBA was 37%. However, even though the properties of CBA were not as good as NA, the results for ACV and the flakiness index of CBA meet the minimum requirement of Jabatan Kerja Raya (JKR) Standard Specification which indicates that CBA has potential to be used in civil construction.
  • Publication
    Influence of Cement Paste Containing Municipal Solid Waste Bottom Ash on the Strength Behavior of Concrete
    ( 2022-01-01) ; ; ; ;
    Ainaa Syamimi Abdul Hamid
    ;
    Boboc M.
    Cement in construction has become a vital requirement to build up the buildings, which may increase the expenses in construction. Materials that have the potential to replace cement would be proposing. This study used municipal solid waste incineration bottom ash (MSWIBA) as a partial replacement for cement. MSWIBA used in this study was a by-product from the incineration process and had compound content that was almost the same as cement. The treated bottom ash in the range of 0 to 30% and 10% of untreated bottom ash mixture use in this study. Mechanical and physical properties of concrete analysed with a few tests such as slump test, water absorption test, compressive strength test, heat exposure test and residual strength test after heating has proceeded. The workability of fresh concrete was measured by performing a slump test. Based on the compressive strength result, the 10% substitution of treated bottom ash was achieved the highest strength in testing in 7 and 28 days. Meantime, the control concrete obtained the best thermal insulator because of a smaller number of cracks on the surface of the concrete than that bottom ash concrete surface. After heated, the concrete was tested on compressive strength again to investigate the residual compressive strength. The highest residual surpasses gained by 10% bottom ash (treated) as a partial substitution in cement. Based on the overall test carried out, 10% of bottom ash replacement as cement is the optimum amount of bottom ash required to surpass the strength of the control sample.
  • Publication
    Exploring the Properties of Mortar Containing Incineration Fly Ash
    ( 2021-11-26) ;
    Abdul Malek R.
    ;
    Rahim N.L.
    ;
    Abdul Rahim M.
    ;
    ;
    Mohammed S.A.
    ;
    Badri N.A.
    Fly Ash (FA) is one of the waste materials generated from the combustion of solid waste through incinerator and contains hazardous substances. Further treatment to the ash needs to be done to avoid further environmental destruction. As an alternative solution for this problem, FA is used as a replacement material for cement in the mortar. The main objective of this study is to explore the potential use of FA as partial replacement of cement in mortar. The percentage of FA used to replace the cement in this study is 0%, 5%, 10%, 15% and 20%. Several important tests were conducted to identify main properties of the mortar such as compressive strength, water absorption, density and ultra-pulse velocity. Mortar containing 15% of fly ash has the highest of compression strength which is 35 MPa after 28 days. Besides, the mortar containing 5% of fly ash has the highest result of water absorption test and density test whereas mortar containing 20% of fly ash has the highest value for pulse velocity after 28 days. Thus, mortar containing fly ash has good physical and mechanical properties.