Options
Roshazita Che Amat
Preferred name
Roshazita Che Amat
Official Name
Roshazita, Che Amat
Alternative Name
Amat, Roshazita Che
Che Amat, Roshazita
Amat, R. C.
Che Amat, R.
Main Affiliation
Scopus Author ID
55749971400
Now showing
1 - 3 of 3
-
PublicationEffect of bottom ash and limestone on the optimum binder content in Hot Mix Asphalt (HMA)( 2022-01-01)
;Noor Aina Misnon ;Nurhidayah Hamzah ;Christina Remmy EntalaiDeák GyörgyOne of the most effective and simplest methods to minimize waste as well as reduce the environmental problems associated with waste disposal is by utilizing waste materials as a cement replacement in hot mix asphalt (HMA) mixtures which can provide the same or better stability as the conventional method. Fillers play an important role in the stability and strength of the pavement by filling voids between the aggregate particles in the performance of the HMA mixture. This research investigated the effect of the utilization of different types of filler (bottom ash and limestone) on the optimum binder content of HMA. Flow, stability, stiffness, air void in mix (VIM) and void filled with bitumen (VFB) were determined using the Marshal Method test in order to determine the optimum binder content of HMA for all mineral filler. The results of the Marshall test for each filler have been compared with the JKR standard specification. The optimum binder content for bottom ash, limestone and Ordinary Portland Cement (OPC) was 5.42%, 5.65% and 5.54%, respectively. All values of mineral filler used meet the JKR standard specification, where the range is between 4 and 6%. From the result achieved, the bottom ash has the lower optimum binder content value compared to the limestone and OPC. When the lower binder content is used in the bituminous mixture, the cost for pavement construction will be reduced. -
PublicationA Properties of Municipal Solid Waste Incineration Fly Ash (IFA) And Cement Used in The Manufacturing of New Inventive Blended Cement( 2022-01-01)
;Izzatul Nurain Che Sang BeriZailani W.W.A.Municipal solid waste incinerator fly (IFA) ash is prone to accumulate high concentration heavy metals. Due to the increasing costs to treat remaining fly ash at the landfill, a lot of research has been done to recycle IFA. This study was focusing on the properties of IFA and cement as main raw materials in new inventive blended cement. The properties of blended cement were also being investigated. Properties of IFA and cement were examined through several test which includes density, specific gravity, X-Ray Fluorescence (XRF), Loss of Ignition (LOI) and through Toxicity Characteristic Leaching Procedure (TCLP) test. The density test and LOI test were also being done for the blended cement. From the tests for IFA and cement, it can be found that density the density of fly ash and cement that has been used for this study were found to be 0.76 g/cm3 and 3.67 g/cm3 respectively. Then, the specific gravity of fly ash and cement were 1.69 and 2.98, accordingly. XRF results shows that both materials have highest content of aluminium, silica and iron, as expected. LOI of fly ash and cement were found to be 17.33 % and 12.33 %, respectively. In terms of the leaching rates of heavy metals (Mn, Ni, Cd, Cr, Cu), only Cd leached at rate 2.39 mg/L, which is above the USEPA's regulatory level, 1.0 mg/L. 5 %, 10 % and 15 % of IFA was mixed with cement to produced blended cement. As the density of blended cement, it was found to be 1.12 g/cm3, 1.08 g/cm3 and 1.09 g/cm3 for each of 5 %, 10 % and 15 % of fly ash in blended cement. -
PublicationComparing the Physical Properties of Coal Bottom Ash (CBA) Waste and Natural Aggregate( 2022-01-01)
;Mohamed Reyad Alhadi AhmadSamsudin S.Coal bottom ash (CBA) is a co-combustion product material, which may cause hazards to human health and the environment. Rapid growth in technology causes the increase of CBA waste and this situation led to a waste disposal crisis. Reuse waste material as an alternative material instead of natural materials can led to sustainable and environmentally friendly construction. The main objective of this study is to determine the physical properties of CBA and its suitability to be used as replacement material in civil construction. The physical properties test conducted in this research were aggregate impact value test, aggregate crushed value test, flakiness and elongation test. The results show that the ability of CBA to resist sudden shock and repeated load was lesser than natural aggregate (NA). The differences of aggregate impact value (AIV) and aggregate crushing value (ACV), between NA and CBA were 50.4% and 48.9%, respectively. In addition, CBA has higher amount of flaky and elongated particles compared to NA. The flakiness index value for NA and CBA were 7.12% and 26.10%, respectively while the difference value of elongation index between NA and CBA was 37%. However, even though the properties of CBA were not as good as NA, the results for ACV and the flakiness index of CBA meet the minimum requirement of Jabatan Kerja Raya (JKR) Standard Specification which indicates that CBA has potential to be used in civil construction.