Home
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • ÄŒeÅ¡tina
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • LatvieÅ¡u
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2023
  5. Recycled Incineration Bottom Ash and Metakaolin as Sustainable Materials for Cement Replacement in Cementitious Composites
 
Options

Recycled Incineration Bottom Ash and Metakaolin as Sustainable Materials for Cement Replacement in Cementitious Composites

Journal
IOP Conference Series: Earth and Environmental Science
ISSN
17551307
Date Issued
2023-01-01
Author(s)
Roshazita Che Amat
Universiti Malaysia Perlis
Syakirah Afiza Mohammed
Universiti Malaysia Perlis
Norlia Mohamad Ibrahim
Universiti Malaysia Perlis
Nur Liza Rahim
Universiti Malaysia Perlis
Khairel Rafezi Ahmad
Universiti Malaysia Perlis
Raischi M.
DOI
10.1088/1755-1315/1216/1/012035
Abstract
Study was related to the influence of the concrete properties by using different percentages of metakaolin and fixed percent of incineration bottom ash to partially replace the cement. Cement is a well-known building material and used for the construction in the world. Moreover, the used of metakaolin (MK) and incineration bottom ash (IBA) in this research would give significance to our environment as it can reduce the usage of cement in concrete. By using bottom ash, it could reduce the land filling space. The X-Ray Fluorescence (XRF) test was used to determine the chemical composition of IBA and MK. Four series of concrete have been examined, including control, IBA and MK were used as partial replacement for cement at 10%IBA + 10%MK, 10%IBA + 15%MK and 10%IBA + 20%MK of concrete mixes by volume. The curing period for the samples is 7 days and 28 days. To determine the properties of concrete, the tests such as slump test, density test, water absorption test, pulse velocity test, rebound hammer test and compression test were performed. The results proved that the strength development of 10%IBA + 10%MK concrete sample shows the highest compressive strength after 28 days of curing.
File(s)
research repository notification.pdf (4.4 MB)
Views
2
Acquisition Date
Nov 19, 2024
View Details
google-scholar
Downloads
  • About Us
  • Contact Us
  • Policies