Now showing 1 - 2 of 2
  • Publication
    A 12 GHz LC-VCO Implemented with S’ shape inductor using Silicon-on Sapphire Substrate
    (Universiti Malaysia Perlis, 2022-12-01)
    Khalid N.
    ;
    ; ; ; ; ;
    Mispan M.S.
    A voltage-controlled oscillator (VCO) is an electronic oscillator whose oscillation frequency is controlled by a voltage input. In a VCO, low-phase noise while consuming less power is preferred. The tuning gain and noise in the control signal produce phase noise; more noise or tuning gain implies more phase noise. Sources of flicker noise (1/f noise) in the circuit, the output power level, and the loaded Q factor of the resonator are all crucial factors that influence phase noise. As a result, creating a resonator with a high Q-factor is essential for improving VCO performance. As a result, this paper describes a 12 GHz LC Voltage-Controlled Oscillator (VCO) employed with a ‘S’ shape inductor to improve phase noise and power performance. The phase noise for the VCO was reduced using a noise filtering technique. To reduce substrate loss and improve the Q factor, the inductor was designed on a high-resistivity Silicon-on-Sapphire (SOS) substrate. At 12 GHz, the optimised S’ shape inductor has the highest Q-factor of 50.217. At 10 MHz and 100 MHz, the phase noise of the 12 GHz LC-VCO was-131.33 dBc/Hz and-156.71 dBc/Hz, respectively. With a 3.3 V power supply, the VCO core consumes 26.96 mW of power. Based on the findings, it is concluded that using an ‘S’ shape inductor in the VCO circuit will enable the development of low-cost, high-performance, very low-power system-on-chip wireless transceivers with longer battery life.
      3  25
  • Publication
    Impedance and modulus spectroscopy of polycrystalline Ba0.9995La0.0005TiO3for multilayer ceramic capacitor
    ( 2021-07-21)
    Tiong Yuan Tze
    ;
    ; ;
    Ku Noor Dhaniah Ku Muhsen
    ;
    ;
    Wahab Y.A.
    ;
    Sagadevan S.
    ;
    Sebastian T.
    ;
    Arturo R.L.D.
    Ba0.9995La0.0005TiO3 ceramics prepared via solid-state reaction route was found to be phase pure at the final sintering temperature of 1300°C for 16 hours. The dielectric constant was varied from 1900 to 2800 from 10 Hz to 100 kHz. Impedance spectroscopy is a powerful technique to study the complexities of ceramic materials such as homogeneity and inhomogeneity of materials that being process during production of most electronic materials. An electronic ceramic component can be visualized as a grain, grain boundary and electrode system. Impedance spectroscopy is being widely used to separate out contribution of the bulk and the grain boundary to the overall equivalent circuit models. Fixed frequency plots of dielectric constant versus temperature for Ba0.9995La0.0005TiO3 ceramics shows typical perovskite response with Curie temperature, Tc about 115 °C and fit with the equivalent circuit which contributed by bulk and grain boundary response.
      1