A voltage-controlled oscillator (VCO) is an electronic oscillator whose oscillation frequency is controlled by a voltage input. In a VCO, low-phase noise while consuming less power is preferred. The tuning gain and noise in the control signal produce phase noise; more noise or tuning gain implies more phase noise. Sources of flicker noise (1/f noise) in the circuit, the output power level, and the loaded Q factor of the resonator are all crucial factors that influence phase noise. As a result, creating a resonator with a high Q-factor is essential for improving VCO performance. As a result, this paper describes a 12 GHz LC Voltage-Controlled Oscillator (VCO) employed with a ‘S’ shape inductor to improve phase noise and power performance. The phase noise for the VCO was reduced using a noise filtering technique. To reduce substrate loss and improve the Q factor, the inductor was designed on a high-resistivity Silicon-on-Sapphire (SOS) substrate. At 12 GHz, the optimised S’ shape inductor has the highest Q-factor of 50.217. At 10 MHz and 100 MHz, the phase noise of the 12 GHz LC-VCO was-131.33 dBc/Hz and-156.71 dBc/Hz, respectively. With a 3.3 V power supply, the VCO core consumes 26.96 mW of power. Based on the findings, it is concluded that using an ‘S’ shape inductor in the VCO circuit will enable the development of low-cost, high-performance, very low-power system-on-chip wireless transceivers with longer battery life.