Options
Nurul Aida Mohd Mortar
Preferred name
Nurul Aida Mohd Mortar
Official Name
Nurul Aida, Mohd Mortar
Alternative Name
Mortar, Nurul Aida Mohd
Mohd Mortar, Nurul Aida
Aida Mohd Mortar, Nurul
Main Affiliation
Scopus Author ID
57216407516
Researcher ID
DHB-8250-2022
Now showing
1 - 6 of 6
-
PublicationProperties and behavior of geopolymer concrete subjected to explosive air blast loading: a review( 2017)
;Rafiza Abdul RazakAndrei Victor SanduThe severe damage to civilian buildings, public area, jet aircraft impact and defense target under explosive blast loading can cause a huge property loss. Most of researcher discusses the topics on design the concrete material model to sustain againts the explosive detonation. The implementation of modern reinforcement steels and fibres in ordinary Portland cement (OPC) concrete matrix can reduce the extreme loading effects. However, most researchers have proved that geopolymer concrete (GPC) has better mechanical properties towards high performance concrete, compared to OPC. GPC has the high early compressive strength and high ability to resist the thermal energy from explosive detonation. In addition, OPC production is less environmental friendly than geopolymer cement. Geopolymer used can lead to environmental protection besides being improved in mechanical properties. Thus, this paper highlighted on an experimental, numerical and the analytical studies cause of the explosive detonation impact to concrete structures. -
PublicationFinite element analysis on structural behaviour of geopolymer reinforced concrete beam using Johnson-Cook damage in Abaqus( 2022-01-01)
;Hilmi A.H. ;Shahedan N.N. ;Li L.Y.Aziz I.H.A.This paper details a finite element analysis of the behaviour of Si-Al geopolymer concrete beam reinforced steel bar under an impulsive load and hyper velocity speed up to 1 km/s created by an air blast explosion. The initial torsion stiffness and ultimate torsion strength of the beam increased with increasing compressive strength and decreasing stirrup ratio. The study involves building a finite element model to detail the stress distribution and compute the level of damage, displacement, and cracks development on the geopolymer concrete reinforcement beam. This was done in ABAQUS, where a computational model of the finite element was used to determine the elasticity, plasticity, concrete tension damages, concrete damage plasticity, and the viability of the Johnson-Cook Damage method on the Si-Al geopolymer concrete. The results from the numerical simulation show that an increase in the load magnitude at the midspan of the beam leads to a percentage increase in the ultimate damage of the reinforced geopolymer beams failing in shear plastic deformation. The correlation between the numerical and experimental blasting results confirmed that the damage pattern accurately predicts the response of the steel reinforcement Si-Al geopolymer concrete beams, concluded that decreasing the scaled distance from 0.298 kg/m3 to 0.149 kg/m3 increased the deformation percentage. -
PublicationFINITE ELEMENT ANALYSIS ON STRUCTURAL BEHAVIOUR OF GEOPOLYMER REINFORCED CONCRETE BEAM USING JOHNSON-COOK DAMAGE IN ABAQUS( 2022-01-01)
;Noorfifi Natasha Shahedan ;Li L.Y.Ikmal Hakem Abdul AzizThis paper details a finite element analysis of the behaviour of Si-Al geopolymer concrete beam reinforced steel bar under an impulsive load and hyper velocity speed up to 1 km/s created by an air blast explosion. The initial torsion stiffness and ultimate torsion strength of the beam increased with increasing compressive strength and decreasing stirrup ratio. The study involves building a finite element model to detail the stress distribution and compute the level of damage, displacement, and cracks development on the geopolymer concrete reinforcement beam. This was done in ABAQUS, where a computational model of the finite element was used to determine the elasticity, plasticity, concrete tension damages, concrete damage plasticity, and the viability of the Johnson-Cook Damage method on the Si-Al geopolymer concrete. The results from the numerical simulation show that an increase in the load magnitude at the midspan of the beam leads to a percentage increase in the ultimate damage of the reinforced geopolymer beams failing in shear plastic deformation. The correlation between the numerical and experimental blasting results confirmed that the damage pattern accurately predicts the response of the steel reinforcement Si-Al geopolymer concrete beams, concluded that decreasing the scaled distance from 0.298 kg/m3 to 0.149 kg/m3 increased the deformation percentage.1 -
PublicationProperties and behavior of geopolymer concrete subjected to explosive air blast loading: a review( 2017)
;Andrei Victor SanduRafiza Abdul RazakThe severe damage to civilian buildings, public area, jet aircraft impact and defense target under explosive blast loading can cause a huge property loss. Most of researcher discusses the topics on design the concrete material model to sustain againts the explosive detonation. The implementation of modern reinforcement steels and fibres in ordinary Portland cement (OPC) concrete matrix can reduce the extreme loading effects. However, most researchers have proved that geopolymer concrete (GPC) has better mechanical properties towards high performance concrete, compared to OPC. GPC has the high early compressive strength and high ability to resist the thermal energy from explosive detonation. In addition, OPC production is less environmental friendly than geopolymer cement. Geopolymer used can lead to environmental protection besides being improved in mechanical properties. Thus, this paper highlighted on an experimental, numerical and the analytical studies cause of the explosive detonation impact to concrete structures.8 10 -
PublicationEffect of Solid-to-Liquid Ratio on Thin Fly Ash Geopolymer( 2020-03-18)
;Yong-Sing N. ;Hui-Teng N.Sandu A.V.The present work studies the effect of solid-to-liquid (S/L) ratio on the properties of thin fly ash-based geopolymer. The fly ash geopolymers with dimension of 160 mm × 40 mm × 10 mm were synthesised by using various S/L ratios (1.5, 2.0, 2.5, 3.0 and 3.2). The alkali activator was prepared by mixing 10M sodium hydroxide (NaOH) solution and sodium silicate (Na2SiO3) with the Na2SiO3/NaOH ratio of 2.5. The samples were cured at 60°C for 6 hours. The performance of fly ash geopolymers was evaluated by testing the flexural strength after 28 days. Results showed that the S/L ratio had an effect on flexural strength. The optimum flexural strength of 5.12 MPa was achieved by the fly ash geopolymer with S/L ratio of 2.5. However, the flexural strength dropped with higher S/L ratio as the workability decreases. However, further experimental lab work should be carried out as there is less knowledge in the study on the flexural strength of thin fly ash geopolymer.1 -
PublicationFinite element analysis on structural behaviour of geopolymer reinforced concrete beam using Johnson-Cook Damage in ABAQUS( 2022)
;Rafiza Abdul Razak ;Noorfifi Natasha Shahedan ;Long Yuan LiIkmal Hakem A. AzizThis paper details a finite element analysis of the behaviour of Si-Al geopolymer concrete beam reinforced steel bar under an impulsive load and hyper velocity speed up to 1 km/s created by an air blast explosion. The initial torsion stiffness and ultimate torsion strength of the beam increased with increasing compressive strength and decreasing stirrup ratio. The study involves building a finite element model to detail the stress distribution and compute the level of damage, displacement, and cracks development on the geopolymer concrete reinforcement beam. This was done in ABAQUS, where a computational model of the finite element was used to determine the elasticity, plasticity, concrete tension damages, concrete damage plasticity, and the viability of the Johnson-Cook Damage method on the Si-Al geopolymer concrete. The results from the numerical simulation show that an increase in the load magnitude at the midspan of the beam leads to a percentage increase in the ultimate damage of the reinforced geopolymer beams failing in shear plastic deformation. The correlation between the numerical and experimental blasting results confirmed that the damage pattern accurately predicts the response of the steel reinforcement Si-Al geopolymer concrete beams, concluded that decreasing the scaled distance from 0.298 kg/m3 to 0.149 kg/m3 increased the deformation percentage.3 11