Now showing 1 - 2 of 2
  • Publication
    Electrochemiluminescence of carbon dots and nitrogen-doped carbon dots from a microwave-assisted method
    ( 2023-10)
    Nurul Izzati Akmal Mohd Azman
    ;
    Muhammad Amirul Afiq Abdul Halim
    ;
    ; ; ; ;
    Siti Aisyah Shamsudin
    ;
    Eiichi Tamiya
    This research focuses on the use of carbon dots (CDs) and nitrogen-doped carbon dots (NCDs) synthesized using a microwave-assisted method as electrochemiluminescence (ECL) luminophores. CDs have been synthesized using citric acid, while various concentrations of nitrogen-doped CDs have been successfully obtained by varying the amount of urea from 1 to 3 g with citric acid to produce NCD1, NCD,2 and NCD3. The ECL mechanism of CDs and NCDs on screen-printed electrodes has been studied using cyclic voltammetry (CV). ECL emission from as-prepared CDs and NCDs was observed in PBS with potassium persulfate (K2S2O8) as a co-reactant. The addition of potassium chloride (KCl) as a supporting electrolyte displays fast electroreduction of CDs and K2S2O8 to expedite the generation of CDs and peroxydisulfate radicals that simultaneously increase ECL intensity. Furthermore, as the concentration of nitrogen-doped CDs increases, so does the intensity of the ECL. NCD3 shows the highest ECL intensity by an increment of 86.4% in comparison to CDs in PBS with the addition of K2S2O8 and KCl. Finally, optimization of ECL measurement was carried out in terms of CV potential range, concentration of luminophore, supporting electrolyte, and co-reactant using NCD3 luminophore. The CV potential range at 0 to -2 V shows 50 mV of early CV reverse onset potential that resulted in an increase of 52.9% ECL intensity. Meanwhile, 30x dilution of NCD3, 0.1 M of supporting electrolyte KCl, and 0.1 M of co-reactant K2S2O8 show the optimum value to obtain high ECL intensity.
  • Publication
    Optimization of gold nanoparticles electrodeposition duration on screen printed electrode to enhance electrochemiluminescence of nitrogen-doped carbon dots
    ( 2023-12)
    Nurul Izzati Akmal Mohd Azman
    ;
    ; ; ; ;
    Toibah Abd Rahim
    ;
    Siti Aisyah Shamsudin
    ;
    Eiichi Tamiya
    In this work, the electrodeposition method was utilized to form gold nanoparticles on a carbon screen-printed electrode (SPE) using chronoamperometry at -0.4 V with various durations from 50 to 200 seconds. Scanning Electron Microscopy (SEM) images have proven that the electrodeposition method is capable of uniformly forming AuNPs on SPE (AuNPs- SPE). Apart from that, electrodeposition durations have increased the size of AuNPs by up to 66% based on average size measurements using ImageJ software. It can be observed that long electrodeposition durations permit the agglomeration of AuNPs on the electrode surface. The effect of electrodeposition duration on electrocatalytic performance in potassium ferricyanide and electrochemiluminescence (ECL) intensity of nitrogen-doped carbon dots (NCDs) was evaluated. Cyclic voltammetry (CV) of ferricyanide demonstrates that as the electrodeposition duration increases, AuNPs-SPE shows better electrochemical performance than bare SPE. ECL of NCDs displays that 100 s electrodeposition durations give the highest ECL intensity of 184% compared to bare SPE and have been chosen as the optimum parameter. The ECL mechanisms of bare SPE and AuNPs-SPE reveal that AuNPs- SPE has greater electrochemical and ECL performance than bare SPE, as evidenced by the CV of AuNPs-SPE having a faster reduction current, which rises to 87.2% ECL intensity and 510 mV faster ECL occurrence. These phenomena confirmed that the electrodeposition of AuNPs has improved the conductivity of SPE.
      6  3