Now showing 1 - 3 of 3
  • Publication
    Experimental Investigation on the Effectiveness of Truss-Shaped Punching Shear Reinforcement in Flat Slab
    ( 2022-07-18) ;
    Zaini S.S.
    ;
    Johari M.A.M.
    ;
    ;
    The use of reinforced concrete flat slabs in building construction increases the floor-to-floor clearance, expedites site operations, and offers aesthetically rewarding features. However, punching shear failure in a flat slab is brittle in nature and can be potentially catastrophic. Many studies have been conducted to improve the punching shear capacity of flat slabs but some of the proposed punching shear reinforcements were complicated and costly. This research aimed to evaluate the effectiveness of a simple and cost-effective; truss-shaped punching shear reinforcement embedded in a 1200 mm × 1200 mm × 175 mm thick flat slab specimen. Three types of truss-shaped punching shear reinforcements were prepared. All specimens were supported at the edges and subjected to gravity load tests. The results showed that the introduction of truss-shaped punching shear reinforcement increased the punching shear capacity in the range of 7.71% to 21.47%. The maximum deflection of these specimens exhibited an insignificant increase compared to the control specimen, suggesting that punching failure governed the ultimate behavior. The additional strength offered by truss-shaped punching shear reinforcement makes flat slabs as a construction material more appealing because they allow them to withstand higher design loads.
  • Publication
    Recycling municipal solid waste incineration bottom ash as cement replacement in concrete
    Cement was a binder material that used in concrete industry. The cost production was very expensive due to the high global demand. Therefore, as a new alternative to replace the used of cement in concrete, which was bottom ash. The objectives of this study were to investigate properties of cement matric of concrete containing bottom ash, and to observe the ability of bottom ash as a binder. Based on the result on XRF, Ordinary Portland Cement and bottom ash had nearly similar compounds of Calcium and Silica. Results of slump test indicate that concrete contains of 10 %- 30% bottom ash cause the true slump. Determination of the capability and strength of concrete obtained from water absorption test. Percentage of water absorbed increases with increasingly of proportion bottom ash. The strength of concrete for compression test was 27.5 MPa for 10 % of bottom ash that achieved the targeted. Higher percentage of bottom ash replacement affected matrix C-S-H (calcium silicate-hydrate) bond. Interfacial transition zone surface and scanning electron microscope observations confirm these findings. Therefore, municipal solid waste incinerator bottom ash can act partly replace cement in concrete but would not exceed 30% of usage.
      2
  • Publication
    Exploring the Properties of Mortar Containing Incineration Fly Ash
    Fly Ash (FA) is one of the waste materials generated from the combustion of solid waste through incinerator and contains hazardous substances. Further treatment to the ash needs to be done to avoid further environmental destruction. As an alternative solution for this problem, FA is used as a replacement material for cement in the mortar. The main objective of this study is to explore the potential use of FA as partial replacement of cement in mortar. The percentage of FA used to replace the cement in this study is 0%, 5%, 10%, 15% and 20%. Several important tests were conducted to identify main properties of the mortar such as compressive strength, water absorption, density and ultra-pulse velocity. Mortar containing 15% of fly ash has the highest of compression strength which is 35 MPa after 28 days. Besides, the mortar containing 5% of fly ash has the highest result of water absorption test and density test whereas mortar containing 20% of fly ash has the highest value for pulse velocity after 28 days. Thus, mortar containing fly ash has good physical and mechanical properties.
      4