Now showing 1 - 10 of 21
  • Publication
    Hydrogen Evolution Reaction of AC Anodized Stainless Steel 304L
    A novel method of anodizing stainless steel (SS) 304L with alternating current (AC) as the power source is presented in order to generate a porous oxide layer. This study aims to investigate the influence of AC anodizing of SS304L on hydrogen evolution reaction (HER) activity and characterize the morphology of oxide film formed. The AC anodization method was carried out using an AC power source in a solution of ammonium fluoride, NH4F, water, H2O and ethylene glycol at room temperature, with anodizing time ranging from 10 to 50 minutes. Scanning electron microscope (SEM) and a 3D profiler were used to characterize the surface morphology, and a potentiostat is used to study the behaviour of the HER. The results show that the oxide film gradually covered the SS304L surface and fully covered at 30 minutes anodizing time, then begin to crack at 40 and 50 minutes. The thickness of the layer reached its maximum at 5248.67 nm with pore size of 380.13 nm after 30 minutes and then gradually began to decrease. Notably, the lowest HER activity, measuring -426.58 mV, was detected after 30 minutes. These findings clarified the relationship between the AC anodizing time, oxide film morphology, and HER activity, making it easier to optimize stainless steel 304L for enhanced hydrogen evolution applications.
  • Publication
    Surface characterization study of nanoporous anodic aluminium oxide thin film synthesized by single-step anodization
    Nanoporous anodic aluminium oxide (AAO) thin film electrodes were prepared by using a single step anodization method in 0.3 M oxalic acid at 40 V for 1 h. Electrolyte temperature was controlled and maintained at 15 °C by using ice water bath. After anodized, AAO surfaces were etched by using 5% phosphoric acid (H3PO4) solution at 30 °C to remove the AAO top rough surfaces and widening the pores. Effect of different etching duration to the pore widening was investigated at 10, 20 and 30 minutes, respectively. Regularity of the pores arrangements before and after etching were analysed by fast fourier transform (FFT) profile images that were generated from FESEM images. From observation, well ordered nanoporous structures were successfully revealed after top rough surfaces were removed by etching. Pores sizes were also found to be increased with the increasing of etching duration. Further investigations were done by x-ray diffraction (XRD) analysis and fourier transform infra-red spectroscopy (FTIR) to characterize and find out the crystallinity properties and functionalities of AAO thin film electrode surfaces.
  • Publication
    AC and DC anodization on the electrochemical properties of SS304L: A comparison
    This study investigates the application of alternating current (AC) and direct current (DC) anodization techniques on stainless steel 304L (SS304L) in an ethylene glycol and ammonium fluoride (NH4F) electrolyte solution to produce a nano-porous oxide layer. With limited research on AC anodizing of stainless steel, this study focuses on comparing AC and DC anodization in terms of current density versus time response, phase analysis using X-ray diffraction (XRD), and corrosion rate determined by linear polarization. Both AC and DC anodization were performed for 60 minutes at 50 V in an electrolyte solution containing 0.5% NH4F and 3% H2O in ethylene glycol. The results show that AC anodization exhibited higher current density compared to DC anodization. XRD analysis revealed the presence of ferrite (α-Fe) and austenite (γ-Fe) phases in the as-received specimen, while both AC and DC anodized specimens exhibited only the γ-Fe phase. The corrosion rate of the AC-anodized specimen was measured at 0.00083 mm/year, lower than the corrosion rate of the DC-anodized specimen at 0.00197 mm/year. These findings indicate that AC anodization on stainless steel offers advantages in terms of higher current density, phase transformation, and lower corrosion rate compared to DC anodization. These results highlight the need for further investigation and exploration of AC anodization as a promising technique for enhancing the electrochemical properties of stainless steel.
  • Publication
    Determination of Protective Potential in the Zero Charge Corrosion Protection System
    ( 2020-11-24) ;
    Wardan R.
    ;
    Rahmat A.
    ;
    ;
    Sanusi M.S.
    ;
    Mohd Fitri M.W.
    Zero charge corrosion protection, ZCCP, is a new invention in the field of corrosion protection. It applies alternating current, AC, mode while the protective potential to ensure that the metal exposed in the corrosive environment still does not exist in any of the previous works of literature. The study was conducted by the voltage scanning within corrosion potential, Ecorr, and polarized potential, Eimpressed, using potentiostat. It was carried out by examining the behavior of the current flow in the circuit. The experimental results found that the protective potential for maximum protection in the ZCCP system is 0 mV. By keeping the AC metal potential at 0 mV, the surface will not acquire any charges, hence the corrosion reaction will be inhibited.
  • Publication
    Role of metals content in spinach in enhancing the conductivity and optical band gap of chitosan films
    ( 2015)
    Irwana Nainggolan
    ;
    Devi Shantini
    ;
    Tulus Ikhsan Nasution
    ;
    Blend of chitosan and spinach extract has been successfully prepared using acetic acid as a solvent medium to produce chitosan-spinach films. The conductivity measurements showed that chitosan-spinach films for all ratios of 95 : 5, 90 : 10, 85 : 15, and 80 : 20 had better conductivity than the chitosan film. The optical band gap reduced with the addition of the spinach extract into chitosan. Chitosan-spinach film with the ratio of 85 : 15 gave the best electrical properties in this work with the conductivity of 3.41 × 10−6 S/m and optical band gap of 2.839 eV. SEM-EDX spectra showed the existence of potassium, phosphorus, sulphur, iron, and oxygen in chitosan-spinach films. AFM image showed that the surface morphology of the films became rougher as the spinach incorporated into chitosan. The minerals which exist in spinach extract play a role in enhancing electrical properties of chitosan film.
  • Publication
    Corrosion Resistance of Micro-Textured Surface Modified Alumina-Titania Coating
    ( 2020-03-18)
    Wahab J.A.
    ;
    Ghazali M.J.
    ;
    Effect of micro-texture on the corrosion resistance of alumina-titania coated mild steel was investigated. The micro-texture was fabricated on the coating surface via laser surface texturing technique. Tafel extrapolation and immersion test was conducted to measure the corrosion resistance and corrosion mechanism of the coating in 3.5% NaCl solution. The results indicated that the micro-texture contributes to a significant improvement of corrosion resistance due to the formation small volume of air trapped in the micro-grooves, which resist the penetration of corrosive ions and reduce the area of solid-liquid interface. The WCA indicated that the textured surface had low wettability. The SEM analysis showed the occurrence of uniform corrosion. The analysis of EDS revealed that there was formation of corrosion product at the coating-substrate interface. In short, the resistance towards corrosion was increased up to 73% indicating that the resistivity of the coating against corrosion was improved by engraving the micro-texture on its surface.
  • Publication
    Impact of AC anodizing on SS304L oxide film and its effect on hydrogen evolution reaction (HER) properties
    ( 2023-12)
    Nur Suhaily Azmi
    ;
    ;
    The effect of AC anodizing on the formation of oxide film on stainless steel 304L (SS304L) surfaces and its influence on the hydrogen evolution reaction (HER) were studied in this study. The SS304L specimens were prepared before being anodized for 30 minutes at various voltages (range from 10 V to 50 V) using an AC power supply at room temperature. The surface morphology is studied using scanning electron microscope (SEM) and 3D profilometer. A potentiostat is used to run linear sweep voltammetry (LSV) and Tafel analysis for the HER characterization. The result recorded the highest thickness of 9273.45 nm at 40 V anodizing voltage and the lowest surface roughness of 837.16 nm recorded at 50 V. The linear sweep polarization test solution exhibited the lowest overpotential at 50 V, 398.3 mV and a Tafel slope of 196 mVdec-1. These findings provide insight on the possibility of AC anodizing for improving the surface characteristics of SS304L for use in energy conversion applications.
  • Publication
    Corrosion resistance improvement of 6061 aluminum alloy using anodizing process
    ( 2024-01-01) ;
    Shukri M.F.
    ;
    Aluminum alloy is a material that is frequently used in the aerospace and transportation industries due to its high mechanical and corrosion resistance qualities. Unfortunately, aluminum alloys are prone to corrosion, limiting their application in some harsh situations such as when submerged in aqueous environments. The purpose of this study is to investigate how anodizing can increase the corrosion resistance of 6061 Aluminum alloy. The anodizing process was carried out using two different parameters which are voltage (5V, 10V, 15V) and electrolyte sulfuric acid (H2SO4) concentration (0.3M, 0.5M) for 1 hour. The anodized samples were performed using several analyses such as X-ray diffraction (XRD) analysis, morphology analysis, and corrosion test. From this study, it is found that the difference in anodizing parameters affects the corrosion resistance of the samples. Sample anodized at 15V, 0.5M gives the best corrosion resistance.
  • Publication
    THE MORPHOLOGY AND ELECTROCHEMICAL STUDIES OF AC ANODIZED SS304L UNDER VARIOUS ANODIZING CONDITIONS
    A novel method of anodizing stainless steel (SS) 304L with alternating current (AC) as the power source is presented in the interest of producing a porous oxide film. Since there is a scarcity of research on AC anodizing, this research work is focused on the electrochemistry and morphology of the oxide film generated on the SS304L. The anodizing is done in an ethylene glycol solution containing different concentrations of ammonium fluoride, NH4F, varying from 0.5 wt.% to 7 wt.%. The anodizing voltage is fixed to 40 V and the process is carried out at 25oC for 30 minutes. The electrochemical studies using the Tafel polarization method in terms of corrosion rate showed decreased values from 0.2842 mm/year to 0.1026 mm/year of the as-received, and anodized 3.0 wt.% specimens, respectively. For morphological studies, the oxide film formed on the anodized SS304L is characterized using a scanning electron microscopy (SEM) and the thickness of the oxide film formed is recorded using 3D profilometer. The morphology demonstrated the formation of the porous arrangement with localized parts of the surface oxide layer and the thickness of the oxide film rises at 2.65 µm and 4.29 µm, respectively, when the NH4F concentration increases from 0.5 wt.% to 1.0 wt.%. This indicates that there are significant advantages of using AC anodizing on stainless steel.
  • Publication
    Study on the effects of anodizing voltage to the AAO thin film dimensional properties synthesized by single step anodization method
    Anodic aluminium oxide (AAO) thin film electrodes were synthesized by using a single step anodizing method in 15 °C of 0.3 M oxalic acid at five different anodizing voltage ranging from 20 V to 60 V, respectively. The effect of anodizing voltage to the AAO dimensional properties were about to be investigated. Morphological observations were all done by FESEM where the measurements and calculation were made by using ImageJ and formulas. To ensure that the pore sizes were totally depended on the anodizing voltage, etching process were done at constant duration for all samples. The correlation between all AAO dimensional properties like pores size, interpore distance, wall thickness, pore density, percentage of porosity and nanoporous oxide thickness were presented in a linear graph.