Now showing 1 - 3 of 3
  • Publication
    Correlation analysis of lightning and flash flood events using Pearson model in Southeast Peninsular Malaysia
    (IEEE, 2023-07)
    Noraishah Bahari
    ;
    Mona Riza Mohd Esa
    ;
    Flash flood is a natural disaster that causes many casualties and economic losses; it has become prevalent in Malaysia, where several events have been reported showing a possible correlation between lightning, rain, and flash floods. The lightning and rainfall intensity associated with flash flood events, are analyzed between January and April 2022 for three events (cases) within a distance of 100 km from Universiti Teknologi Malaysia, Johor. The data supplied by Tenaga Nasional Berhad Research Sdn. Bhd. (TNBR), Department of Irrigation and Drainage (DID) and Malaysia Meteorological Department (MetMalaysia) were evaluated for statistical discrepancies, which is a different approachable method by limiting the criteria for each data source. This research aims to investigate the relationship between the number of lightning occurrences with the amount of rain in 24 hours by applying the Pearson correlation coefficient (r) and determine the relationship strength between lightning and rainfall intensity parameters by implementing the rainfall-lightning ratio (RLR) change to rainfall-lightning rate, which is commonly used to evaluate the relationship between rainfall and lightning. This study found that the r-values between lightning and rain range from 0.4 to 0.7, which correlates well with rainfall and is considered an acceptable correlation. The different values due to the number of lightning and rain occurrences are inconsistent for each independent case. According to the findings, lightning data may be utilized in association with rain. Therefore, the accuracy of the existing flood forecasting system may be improved.
  • Publication
    Program Didik Cemerlang: memperkasakan pelajar Melayu Negeri Perlis
    (Universiti Malaysia Perlis (UniMAP), 2010-03-29) ; ;
    Raja Shah Erman Raja Ariffin
    ;
    Mohd Hizazy Yusof
    ;
    Mohd Jabar Tariq Alizul Pakar
    Dewasa ini, pendidikan merupakan teras kepada kecemerlangan sesebuah umat dan bangsa. Dalam memartabatkan sesebuah bangsa, aspek ekonomi, pendidikan dan sosial haruslah selari dengan perkembangan dunia. Imam al-Ghazali pernah berkata kemuliaan seseorang manusia adalah kepada tingkatan ilmu yang dimiliki. Justeru ilmu memainkan peranan penting dalam membezakan taraf sesuatu bangsa. Justeru Program Didik Cemerlang telah dirangka bagi tujuan membantu dan membimbing pelajar - pelajar bagi tujuan menghadapi peperiksaan utama iaitu Penilaian Menengah Rendah dan Sijil Pelajaran Malaysia. Program Didik Cemerlang ini akan berlangsung selama setahun bermula dari bulan Mac 2009 sehinggalah pelajar menghadapi peperiksaan Penilaian Menengah Rendah dan Sijil Pelajaran Malaysia. Program ini melibatkan seramai 267 orang yang terdiri daripada 165 orang pelajar yang akan mengambil peperiksaan Penilaian Menengah Rendah dan 102 orang pelajar yang akan mengambil peperiksaan Sijil Pelajaran Malaysia. Berdasarkan kajian yang dilakukan, penerusan kelas dan bimbingan setiap bulan memberikan impak besar terhadap keputusan pelajar-pelajar yang terlibat dalam program ini. Lebih dari 65 peratus pelajar mendapat keputusan A dalam ketiga-tiga mata pelajaran yang ditumpukan dalam peperiksaan Penilaian Menegah Rendah. Malah hampir 94 peratus pelajar yang menyertai program ini bersetuju dan menyokong agar program seperti ini diteruskan di masa hadapan. Justeru program seperti ini perlu dilaksanakan setiap tahun agar tahap pencapaian anak Melayu ditingkatkan agar mereka mampu bersaing dengan pelajar-pelajar lain.
      1  20
  • Publication
    Fibonacci retracement pattern recognition for forecasting foreign exchange market
    Fibonacci retracement implicates a forecast of future movements in foreign exchange rates (forex) of the previous movement inductive analysis. Fibonacci ratios are used to forecast the retracements level of 0.382, 0.500 and 0.618 and to determine the current trend which provide the mathematical foundation for the Elliott wave theory. K-nearest neighbour (KNN) and linear discriminant analysis (LDA) algorithm are the pattern recognition method for nonlinear feature mining of Elliott wave patterns. Results show that LDA is better than KNN in terms of classification accuracy data which are 99.43%. Among of three levels of Fibonacci retracement results, the 38.2% shows the best forecasting for Great Britain Pound pair to US Dollar currency as major pair by using mean absolute error (MAE), root mean square error (RMSE) and pearson correlation coefficient (r) as the statistical measurements which are 0.001884, 0.000019 and 0.992253 for uptrend and 0.001685, 0.000019 and 0.998806 for downtrend.
      1  59