Options
Rafiza Abd Razak
Preferred name
Rafiza Abd Razak
Official Name
Rafiza, Abd Razak
Alternative Name
Rafiza, Abd Razak
Rafiza, Abdul Razak
Abdul Razak, Rafiza
Rafiza, R. A.
Razak, Rafiza Abd
Rafiza, A. R.
Abdul Razak, R.
Razak, R. A.
Razak, Rafiza Abdul
Razak, A. R.
Abd Razak, R.
Main Affiliation
Scopus Author ID
51161919900
Researcher ID
AAL-1501-2020
Now showing
1 - 10 of 49
-
PublicationMechanical performance, microstructure, and porosity evolution of fly ash geopolymer after ten years of curing age( 2023)
;Ikmal Hakem A. Aziz ;Jitrin Chaiprapa ;Catleya Rojviriya ;Petrica Vizureanu ;Andrei Victor SanduThis paper elucidates the mechanical performance, microstructure, and porosity evolution of fly ash geopolymer after 10 years of curing age. Given their wide range of applications, understanding the microstructure of geopolymers is critical for their long-term use. The outcome of fly ash geopolymer on mechanical performance and microstructural characteristics was compared between 28 days of curing (FA28D) and after 10 years of curing age (FA10Y) at similar mixing designs. The results of this work reveal that the FA10Y has a beneficial effect on strength development and denser microstructure compared to FA28D. The total porosity of FA10Y was also lower than FA28D due to the anorthite formation resulting in the compacted matrix. After 10 years of curing age, the 3D pore distribution showed a considerable decrease in the range of 5–30 µm with the formation of isolated and intergranular holes. -
PublicationWaste material via geopolymerization for heavy-duty application: a review( 2022)
;Marwan Kheimi ;Ikmal Hakem Aziz ;Mohammad AlmadaniDue to the extraordinary properties for heavy-duty applications, there has been a great deal of interest in the utilization of waste material via geopolymerization technology. There are various advantages offered by this geopolymer-based material, such as excellent stability, exceptional impermeability, self-refluxing ability, resistant thermal energy from explosive detonation, and excellent mechanical performance. An overview of the work with the details of key factors affecting the heavy-duty performance of geopolymer-based material such as type of binder, alkali agent dosage, mixing design, and curing condition are reviewed in this paper. Interestingly, the review exhibited that different types of waste material containing a large number of chemical elements had an impact on mechanical performance in military, civil engineering, and road application. Finally, this work suggests some future research directions for the the remarkable of waste material through geopolymerization to be employed in heavy-duty application. -
PublicationGeopolymer-based artificial aggregates: a review on methods of producing, properties, and improving techniques( 2022)
;Mohammad AlmadaniRosnita MohamedThe depletion of aggregate-related natural resources is the primary concern of all researchers globally. Recent studies emphasize the significance of recycling and reusing various types of natural or by-product material waste from industry as a result of the building industry’s rising demand for aggregate as the primary component in concrete production. It has been demonstrated that the geopolymer system has exceptional features, such as high strength, superior durability, and greater resistance to fire exposure, making it a viable alternative to ordinary Portland Cement (OPC) concrete. This study will examine the present method utilized to generate artificial aggregate-based geopolymers, including their physical and mechanical properties, as well as their characterization. The production process of geopolymer derived from synthetic aggregates will be highlighted. In conjunction with the bonding of aggregates and the cement matrix, the interfacial transition zone (ITZ) is highlighted in this work as an additional important property to be researched in the future. It will be discussed how to improve the properties of geopolymers based on artificial aggregates. It has been demonstrated that cold bonding provides superior qualities for artificial aggregate while conserving energy during production. The creation of ITZ has a significant impact on the bonding strength between artificial aggregates and the cement matrix. Additionally, improvement strategies demonstrate viable methods for enhancing the quality of manufactured aggregates. In addition, other recommendations are discussed in this study for future work. -
PublicationRice husk (RH) as additive in fly ash based geopolymer mortar( 2017-09-26)
;Mohd Azrin Adzhar RahimArmia NasriIn recent year, the Ordinary Portland Cement (OPC) concrete is vastly used as main binder in construction industry which lead to depletion of natural resources in order to manufacture large amount of OPC. Nevertheless, with the introduction of geopolymer as an alternative binder which is more environmental friendly due to less emission of carbon dioxide (CO2) and utilized waste materials can overcome the problems. Rice husk (RH) is an agricultural residue which can be found easily in large quantity due to production of paddy in Malaysia and it's usually disposed in landfill. This paper investigated the effect of rice husk (RH) content on the strength development of fly ash based geopolymer mortar. The fly ash is replaced with RH by 0%, 5%, 10%, 15% and 20% where the sodium silicate and sodium hydroxide was used as alkaline activator. A total of 45 cubes were casted and their compressive strength, density and water absorption were evaluated at 1, 3, and 7 days. The result showed compressive strength decreased when the percentage of RH increased. At 5% replacement of RH, the maximum strength of 17.1MPa was recorded at day 7. The geopolymer has lowest rate of water absorption (1.69%) at 20% replacement of RH. The density of the sample can be classified as lightweight geopolymer concrete. -
PublicationA State-of-the-Art review on innovative geopolymer composites designed for water and wastewater treatment( 2021)
;Ismail Luhar ;Salmabanu Luhar ;Petrica Vizureanu ;Andrei Victor SanduPetre-Daniel MatasaruThere is nothing more fundamental than clean potable water for living beings next to air. On the other hand, wastewater management is cropping up as a challenging task day-by-day due to lots of new additions of novel pollutants as well as the development of infrastructures and regulations that could not maintain its pace with the burgeoning escalation of populace and urbanizations. Therefore, momentous approaches must be sought-after to reclaim fresh water from wastewaters in order to address this great societal challenge. One of the routes is to clean wastewater through treatment processes using diverse adsorbents. However, most of them are unsustainable and quite costly e.g. activated carbon adsorbents, etc. Quite recently, innovative, sustainable, durable, affordable, user and eco-benevolent Geopolymer composites have been brought into play to serve the purpose as a pretty novel subject matter since they can be manufactured by a simple process of Geopolymerization at low temperature, lower energy with mitigated carbon footprints and marvellously, exhibit outstanding properties of physical and chemical stability, ion-exchange, dielectric characteristics, etc., with a porous structure and of course lucrative too because of the incorporation of wastes with them, which is in harmony with the goal to transit from linear to circular economy, i.e., “one’s waste is the treasure for another”. For these reasons, nowadays, this ground-breaking inorganic class of amorphous alumina-silicate materials are drawing the attention of the world researchers for designing them as adsorbents for water and wastewater treatment where the chemical nature and structure of the materials have a great impact on their adsorption competence. The aim of the current most recent state-of-the-art and scientometric review is to comprehend and assess thoroughly the advancements in geo-synthesis, properties and applications of geopolymer composites designed for the elimination of hazardous contaminants viz., heavy metal ions, dyes, etc. The adsorption mechanisms and effects of various environmental conditions on adsorption efficiency are also taken into account for review of the importance of Geopolymers as most recent adsorbents to get rid of the death-defying and toxic pollutants from wastewater with a view to obtaining reclaimed potable and sparkling water for reuse offering to trim down the massive crisis of scarcity of water promoting sustainable water and wastewater treatment for greener environments. The appraisal is made on the performance estimation of Geopolymers for water and wastewater treatment along with the three-dimensional printed components are characterized for mechanical, physical and chemical attributes, permeability and Ammonium (NH4+) ion removal competence of Geopolymer composites as alternative adsorbents for sequestration of an assortment of contaminants during wastewater treatment. -
PublicationPerformance of Sintered Pozzolanic Artificial Aggregates as Coarse Aggregate Replacement in Concrete( 2021-01-01)
;Subaer ;Mohamed R.The abundant increase in waste quantities year by year and the depletion of natural resources worldwide are the major concerns among researchers. Recycling and reusing various types of natural or by-product material waste from industry become highlighted in the recent study. The growing demand for concrete and the production of artificial aggregate become crucial in the construction industry. Artificial aggregate can be produced either by sintering, auto-clave or cold bonding method. Although auto-clave and cold bonding methods can minimize energy consumption, the selection of the sintering method always leads to high quality and better properties of artificial aggregates produced. The use of sintering methods to produce artificial aggregate made from pozzolanic material focuses on the use of volcanic ash as raw material activated by geopolymerization process to produce artificial lightweight aggregate-based geopolymer will be summarized in this chapter. This chapter discusses the result of the physical and mechanical properties of artificial lightweight aggregate or known as sintered geopolymer volcanic ash artificial lightweight aggregate (SGVA). The interfacial transition zone (ITZ) of sintered geopolymer volcanic ash artificial lightweight aggregate (SGVA) is presented. The performance of sintered geopolymer volcanic ash artificial lightweight aggregate (SGVA) in concrete is also discussed.1 -
PublicationThe Effect of NaOH Concentration on Palm Oil Boiler Ash (POBA) based Geopolymer Artificial Aggregate( 2024-04-19)
;Hao D.L.C.SubaerIndustrial wastes or by-products can be used to create artificial aggregates. Solid waste created by the palm oil industry is a significant environmental problem that requires immediate and long-term solutions. The optimal ratio of geopolymer-based palm oil boiler ash (POBA) aggregate in terms of specific gravity, water absorption, and aggregate impact value was explored in this work. Because of its high percentages of silica oxide (SiO2) and aluminium oxide (Al2O3), POBA was chosen as the primary precursor for the geopolymer (Al2O3). The POBA aggregate with the lowest specific gravity was 1.662, while all of the geopolymer-based POBA aggregates had specific gravities below 2. The geopolymer-based POBA aggregate absorbs more water than the natural aggregate. The aggregate effect value for sodium hydroxide concentrations (6M, 8M, 10M, 12M, 14M) is less than 30%, which is considered strong.1 -
PublicationBehavior of alkali-activated fly ash through underwater placement( 2021-11-01)
;Li Long-Yuan ;Nergis D.D.B. ;Muhammad Aiman Asyraf Zainal Hakimi ;Sandu A.V. ;Vizureanu P.Underwater concrete is a cohesive self-consolidated concrete used for concreting underwater structures such as bridge piers. Conventional concrete used anti-washout admixture (AWA) to form a high-viscosity underwater concrete to minimise the dispersion of concrete material into the surrounding water. The reduction of quality for conventional concrete is mainly due to the washing out of cement and fine particles upon casting in the water. This research focused on the detailed investigations into the setting time, washout effect, compressive strength, and chemical composition analysis of alkali-activated fly ash (AAFA) paste through underwater placement in seawater and freshwater. Class C fly ash as source materials, sodium silicate, and sodium hydroxide solution as alkaline activator were used for this study. Specimens produced through underwater placement in seawater showed impressive performance with strength 71.10 MPa on 28 days. According to the Standard of the Japan Society of Civil Engineers (JSCE), the strength of specimens for underwater placement must not be lower than 80% of the specimen’s strength prepared in dry conditions. As result, the AAFA specimens only showed 12.11% reduction in strength compared to the specimen prepared in dry conditions, thus proving that AAFA paste has high potential to be applied in seawater and freshwater applications.2 -
PublicationSurface resistivity and ultrasonic pulse velocity evaluation of reinforced opc concrete and reinforced geopolymer concrete in marine environment( 2021-01-01)
;Ariffin N.F.Chong Y.C.The concrete structures that are built along the seaside often suffer from reduced service life due to inadequate durability against deterioration. This research reports the findings of concrete resistivity and quality using two Non-Destructive Testing (NDT) measures applied to Reinforced Geopolymer and Ordinary Portland Cement (OPC) concrete in the marine environment. In addition, the relationship between Reinforced Geopolymer and Reinforced OPC concrete was statistically discussed in-terms of strength and direction. The testing was carried out using a Proceeq Resipod Wenner 4-probe to measure Surface Resistivity (SR) and Ultrasonic Pulse Velocity (UPV), respectively. The testings were carried out on beam shaped samples of OPC and Geopolymer concrete that were immersed in seawater over a period of 90 days with similar curing condition. It was found from the present investigation that the maximum SR and maximum UPV values acquired for both the Reinforced OPC and Reinforced Geopolymer concrete are 2.73 kΩcm and 2.07 kΩcm, as well as 4.18 km/s and 4.05 km/s, respectively. It is apparent from the study that both concrete is comparable in terms of quality and surface resistivity.1 -
PublicationArticle the effects of various concentrations of naoh on the inter-particle gelation of a fly ash geopolymer aggregate( 2021-03-01)
;Sochacki W. ;Błoch K.Fansuri H.Aggregates can be categorized into natural and artificial aggregates. Preserving natural resources is crucial to ensuring the constant supply of natural aggregates. In order to preserve these natural resources, the production of artificial aggregates is beginning to gain the attention of researchers worldwide. One of the methods involves using geopolymer technology. On this basis, this current research focuses on the inter-particle effect on the properties of fly ash geopolymer aggregates with different molarities of sodium hydroxide (NaOH). The effects of synthesis parameters (6, 8, 10, 12, and 14 M) on the mechanical and microstructural properties of the fly ash geopolymer aggregate were studied. The fly ash geopolymer aggregate was palletized manually by using a hand to form a sphere-shaped aggregate where the ratio of NaOH/Na2SiO3 used was constant at 2.5. The results indicated that the NaOH molarity has a significant effect on the impact strength of a fly ash geopolymer aggregate. The highest aggregate impact value (AIV) was obtained for samples with 6 M NaOH molarity (26.95%), indicating the lowest strength among other molarities studied and the lowest density of 2150 kg/m3 . The low concentration of sodium hydroxide in the alkali activator solution resulted in the dissolution of fly ash being limited; thus, the inter-particle volume cannot be fully filled by the precipitated gels.1