Journal Articles
Permanent URI for this collection
Browse
Recent Submissions
1 - 5 of 143
-
PublicationEnhancement and segmentation of Ziehl Neelson sputum slide images using contrast enhancement and Otsu threshold technique(Semarak Ilmu Publishing, 2023)Image processing is the most effective method for enhancement and segmentation of tuberculosis bacilli in sputum smear samples. Improper straining can result in poor screening results such as over-staining, under-staining, and blurred images. The goal is to find an image enhancement and segmentation technique that will prepare the image for feature extraction. There are still some shortcomings with existing method when it is implemented on Ziehl Neelsen images. In normal images, TB bacilli can be identified easily, but in blur and images with dark background, TB bacilli are sometimes hidden behind the sputum cells. Hence, the basic method of contrast enhancement is not enough to improve the contrast of TB bacilli as the object of interest within the image. In this study, the combination of local and partial contrast enhancement is proposed as the best method for image enhancement. Image segmentation can be accomplished using Otsu thresholding technique. Otsu's method is presented as most suitable image processing techniques in this paper. The goal of the Otsu Threshold is to find a threshold value that distinguishes the object of interest from the background. Experiment shows that the combination of local and partial contrast enhancement followed by Otsu’s method achieve an average segmentation accuracy of 98.93% when applied on 50 images of sputum smear.
-
PublicationDevelopment of new spectral amplitude coding OCDMA code by using polarization encoding technique(MDPI, 2023)OCDMA is an optical access technology that has a lot of potential because it can be asynchronously accessed and provides a higher level of security. The authors presented a new DW family code, a flexible double weight (FDW) code, and a novel polarization encoding approach in this paper. The new code is applicable to both odd- and even-weighted codes. The novel polarization encoding approach may be used for numerous wavelengths that overlap. Based on analytic principles, a comparison of two widely used spectrum amplitude-coding SAC-based OCDMA codes, notably modified frequency hopping (MFH), Hadamard, and the double weight (DW) code family. The comparison was based on observing the bit error rate (BER) in each situation. The DW code has a fixed weight of two. The FDW code was introduced to reduce phase-induced intensity noise and multiple access interference (MAI) in transmission networks. FDW codes are versions of the DW code family with weights larger than two. The FDW code outperforms the Hadamard, MFH, DW, modified double weight (MDW), and enhanced double weight (EDW) algorithms. FDW has the capacity to support up to 220 concurrent users. With the new polarization encoding technology, the FDW code can travel up to 60 km at a bit rate of 2.5 Gb/s and 40 km for a 10 Gb/s bit rate.
-
PublicationQuantum information entropy of heavy mesons in the presence of a point-like defect(Elsevier, 2023)Using Schrödinger's formalism, we investigate the quantum eigenstates of the heavy mesons trapped by a point-like defect and by Cornell's potential. One implements this defect to the model considering a spherical metric profile coupled to it. Furthermore, the Nikiforov–Uvarov method is applied to theory to study the quantum eigenstates of the heavy mesons. To calculate the quantum information entropy (QIE), one considers the wave functions that describe the charmonium and bottomonium states. To explore the QIE, we use the well-known Shannon's entropy formulated at the position and reciprocal space. The analysis of the QIE gives us relevant information about how the quantum information change with the variation of the point-like defect. Consequently, considering the Bialynicki-Birula and Mycielski (BBM) relation, we show how this defect influences the quarkonium position and momentum uncertainty measures.
-
PublicationThe assessment of relative permittivity on diesel vapour in the moisture content of Terap red soil by ground penetrating radar(SAGE Publications, 2020)In a common agriculture resource, soil contamination monitoring is a prominent area of study. Nowadays, it is crucial to provide a database for the interpretation of ground penetrating radar (GPR) field data in monitoring soil contamination, such as diesel scatter migration. This study aims to assess the association between permittivity properties and soil water content for diesel contamination in Terap Red soil, which is classified as lateritic soil. Terap Red soil is an agro potential soil and available in more than 40% of distribution areas in Northern Malaysia (Agro-based State). In this research, 800 MHz shielded antenna GPR was applied for 24 hour measurement in a concrete simulation field tank, which was filled with Terap Red soil (1.5 m x 2.6 m x 1.5 m) located at Universiti Teknologi MARA (UiTM) Perlis, Malaysia. Embedded moisture content probe was simultaneously measured to monitor the response of volumetric water content in the contaminated soil. The GPR data were pre-processed and filtered by Reflexw 7.5. The calibrated Agilent Technologies Automated Vector Analyser (VNA) was used to verify the independent relative permittivity value from GPR. As a result, the evaluation of velocities and reflection of GPR data were influenced by the presence of diesel and contaminated vapour. A positive and significant correlation was obtained between relative permittivity and moisture content in the diesel-contaminated soil. In addition, a positive and strong linear regression analysis was also found between relative permittivity and moisture content. This analysis included an accurate total difference of root mean square error (RMSE) difference, which amounted to 0.04, with calibrated dielectric permittivity.
2 1 -
PublicationCoconut shell, coconut shell activated carbon and beta-silicon carbide reinforced polymer composite: an alternative dielectric material for wireless communication application(Institute of Advanced Engineering and Science (IAES), 2020)The effect of coconut shell (CS), coconut shell activated carbon (CSAC) and beta-silicon carbide (β-SiC) in polymer composites was investigated. Elemental composition, surface morphologies and structural analyses of the fillers were performed using carbon, hydrogen, nitrogen and sulfur (CHNS) analyser, scanning electron microscope (SEM) and X-ray Diffractometer (XRD). The dielectric properties of the composites were measured using open-ended coaxial line method. CS and CSAC fillers had positive influence on the dielectric properties (ε’, ε” and σ) of the polymer composites, contributed by the orientation polarizations arises from polar nature of the amorphous CS and CSAC fillers. β-SiC filler had insignificant influence on the dielectric properties of the polymer composites due to its single polarization of the crystalline structure filler. This finding is in agreement with XRD patterns of CS and CSAC fillers that revealed the presence of amorphous structure with broad diffraction peaks that were detected at 2ϴ=22.236°, 34.8604° and 2ϴ=23.985° and 44.015°, respectively. The amorphization structure in the polymer composites allows the displacement and conduction currents that were induced from electric field to flow through the polymer composites when subjected to electromagnetic energy, thus increased the dielectric properties of the composites.