Journal Articles
Permanent URI for this collection
Browse
Browsing Journal Articles by Issue Date
Results Per Page
Sort Options
-
PublicationA disposable sensor for assessing Artocarpus Heterophyllus L. (Jackfruit) maturity( 2003)
;Maxsim Sim ;Mohd Noor Ahmad ;Chang JuChang CheenThe purpose of this work was an attempt to monitor the ripeness process and to investigate the different maturity stages of jackfruit by chemometric treatment of the data obtained from the disposable sensor. Response of the sensor strip fabricated using screen- printing technology was analyzed using Principal Component Analysis (PCA) and the classification model constructed by means of Canonical Discriminant Analysis (CDA) enable unknown maturity stages of jackfruit to be identified. Results generated from the combination of the two classification principles show the capability and the performance of the sensor strip towards jackfruit analysis.2 11 -
PublicationMonitoring of milk quality with disposable taste sensor( 2003)
;Maxsim Sim ;Teo Jau Shya ;Mohd Noor Ahmad ;Abdul OthmanMuhammad HitamA disposable screen-printed multi channel taste sensor composed of several types of lipid as transducers and a computer as data analyzer could detect taste in a manner similar to human gustatory sensation. The disposable taste sensor was used to measure the electrical potential resulted from the interaction between lipid membranes and taste substances. In the present study, two types of packaged commercial milk, the ultra high temperature (UHT) and the pasteurized milk were tested. It was found that the disposable taste sensor is capable to discriminate reliably between fresh and spoiled milk and to follow the deterioration of the milk quality when it is stored at room temperature based on a pattern recognition principle namely Principle Component Analysis (PCA). This research could provide a new monitoring method ideally for simple and cheap decentralized testing for controlling the quality of milk, which may be of great use in the dairy industries.4 12 -
PublicationDevelopment of multichannel artificial lipid-polymer membrane sensor for phytomedicine application( 2006)
;Mohd Noor Ahmad ;Zhari Ismail ;Oon–Sim Chew ;AKM IslamQuality control of herbal medicines remain a challenging issue towards integrating phytomedicine into the primary health care system. As medicinal plants is a complicated system of mixtures, a rapid and cost-effective evaluation method to characterize the chemical fingerprint of the plant without performing laborious sample preparation procedure is reported. A novel research methodology based on an in-house fabricated multichannel sensor incorporating an array of artificial lipid-polymer membrane as a fingerprinting device for quality evaluation of a highly sought after herbal medicine in the Asean Region namely Eurycoma longifolia (Tongkat Ali). The sensor array is based on the principle of the bioelectronic tongue that mimics the human gustatory system through the incorporation of artificial lipid material as sensing element. The eight non-specific sensors have partially overlapping selectivity and cross-sensitivity towards the targeted analyte. Hence, electrical potential response represented by radar plot is used to characterize extracts from different parts of plant, age, batch-to-batch variation and mode of extraction of E. longifolia through the obtained potentiometric fingerprint profile. Classification model was also developed classifying various E. longifolia extracts with the aid of chemometric pattern recognition tools namely hierarchical cluster analysis (HCA) and principal component analysis (PCA). The sensor seems to be a promising analytical device for quality control based on potentiometric fingerprint analysis of phytomedicine. -
PublicationDisposable E-Tongue for the assessment of water quality in fish tanks( 2008)
;Chew-Cheen Chang ;Bahruddin Saad ;Misni SurifA disposable screen-printed e-tongue based on sensor array and pattern recognition that is suitable for the assessment of water quality in fish tanks is described. The characteristics of sensors fabricated using two kinds of sensing materials, namely (i) lipids (referred to as Type 1), and (ii) alternative electroactive materials comprising liquid ion-exchangers and macrocyclic compounds (Type 2) were evaluated for their performance stability, sensitivity and reproducibility. The Type 2 e-tongue was found to have better sensing performance in terms of sensitivity and reproducibility and was thus used for application studies. By using a pattern recognition tool i.e. principal component analysis (PCA), the e-tongue was able to discriminate the changes in the water quality in tilapia and catfish tanks monitored over eight days. E-tongues coupled with partial least squares (PLS) was used for the quantitative analysis of nitrate and ammonium ions in catfish tank water and good agreement were found with the ion-chromatography method (relative error, ±1.04- 4.10 %).4 9 -
PublicationClassification of agarwood oil using an electronic nose( 2010)
;Wahyu Hidayat ;Mohd Noor AhmadPresently, the quality assurance of agarwood oil is performed by sensory panels which has significant drawbacks in terms of objectivity and repeatability. In this paper, it is shown how an electronic nose (e-nose) may be successfully utilised for the classification of agarwood oil. Hierarchical Cluster Analysis (HCA) and Principal Component Analysis (PCA), were used to classify different types of oil. The HCA produced a dendrogram showing the separation of e-nose data into three different groups of oils. The PCA scatter plot revealed a distinct separation between the three groups. An Artificial Neural Network (ANN) was used for a better prediction of unknown samples. -
PublicationImproved classification of orthosiphon stamineus by data fusion of electronic nose and tongue sensors( 2010)
;Mohd Noor Ahmad ;Nazifah Ahmad FikriAn improved classification of Orthosiphon stamineus using a data fusion technique is presented. Five different commercial sources along with freshly prepared samples were discriminated using an electronic nose (e-nose) and an electronic tongue (e-tongue). Samples from the different commercial brands were evaluated by the e-tongue and then followed by the e-nose. Applying Principal Component Analysis (PCA) separately on the respective e-tongue and e-nose data, only five distinct groups were projected. However, by employing a low level data fusion technique, six distinct groupings were achieved. Hence, this technique can enhance the ability of PCA to analyze the complex samples of Orthosiphon stamineus. Linear Discriminant Analysis (LDA) was then used to further validate and classify the samples. It was found that the LDA performance was also improved when the responses from the e-nose and e-tongue were fused together. -
PublicationA hybrid sensing approach for pure and adulterated honey classification( 2012)
;Norazian Subari ;Junita Mohamad SalehThis paper presents a comparison between data from single modality and fusion methods to classify Tualang honey as pure or adulterated using Linear Discriminant Analysis (LDA) and Principal Component Analysis (PCA) statistical classification approaches. Ten different brands of certified pure Tualang honey were obtained throughout peninsular Malaysia and Sumatera, Indonesia. Various concentrations of two types of sugar solution (beet and cane sugar) were used in this investigation to create honey samples of 20%, 40%, 60% and 80% adulteration concentrations. Honey data extracted from an electronic nose (e-nose) and Fourier Transform Infrared Spectroscopy (FTIR) were gathered, analyzed and compared based on fusion methods. Visual observation of classification plots revealed that the PCA approach able to distinct pure and adulterated honey samples better than the LDA technique. Overall, the validated classification results based on FTIR data (88.0%) gave higher classification accuracy than e-nose data (76.5%) using the LDA technique. Honey classification based on normalized low-level and intermediate-level FTIR and e-nose fusion data scored classification accuracies of 92.2% and 88.7%, respectively using the Stepwise LDA method. The results suggested that pure and adulterated honey samples were better classified using FTIR and e-nose fusion data than single modality data.2 8 -
PublicationA Bio-Inspired herbal tea flavour assessment techniqueHerbal-based products are becoming a widespread production trend among manufacturers for the domestic and international markets. As the production increases to meet the market demand, it is very crucial for the manufacturer to ensure that their products have met specific criteria and fulfil the intended quality determined by the quality controller. One famous herbal-based product is herbal tea. This paper investigates bio-inspired flavour assessments in a data fusion framework involving an e-nose and e-tongue. The objectives are to attain good classification of different types and brands of herbal tea, classification of different flavour masking effects and finally classification of different concentrations of herbal tea. Two data fusion levels were employed in this research, low level data fusion and intermediate level data fusion. Four classification approaches; LDA, SVM, KNN and PNN were examined in search of the best classifier to achieve the research objectives. In order to evaluate the classifiers' performance, an error estimator based on k-fold cross validation and leave-one-out were applied. Classification based on GC-MS TIC data was also included as a comparison to the classification performance using fusion approaches. Generally, KNN outperformed the other classification techniques for the three flavour assessments in the low level data fusion and intermediate level data fusion. However, the classification results based on GC-MS TIC data are varied.
-
PublicationPerformance analysis of the microsoft kinect sensor for 2D Simultaneous Localization and Mapping (SLAM) techniquesThis paper presents a performance analysis of two open-source, laser scanner-based Simultaneous Localization and Mapping (SLAM) techniques (i.e., Gmapping and Hector SLAM) using a Microsoft Kinect to replace the laser sensor. Furthermore, the paper proposes a new system integration approach whereby a Linux virtual machine is used to run the open source SLAM algorithms. The experiments were conducted in two different environments; a small room with no features and a typical office corridor with desks and chairs. Using the data logged from real-time experiments, each SLAM technique was simulated and tested with different parameter settings. The results show that the system is able to achieve real time SLAM operation. The system implementation offers a simple and reliable way to compare the performance of Windows-based SLAM algorithm with the algorithms typically implemented in a Robot Operating System (ROS). The results also indicate that certain modifications to the default laser scanner-based parameters are able to improve the map accuracy. However, the limited field of view and range of Kinect's depth sensor often causes the map to be inaccurate, especially in featureless areas, therefore the Kinect sensor is not a direct replacement for a laser scanner, but rather offers a feasible alternative for 2D SLAM tasks.
-
PublicationClassifying sources influencing Indoor Air Quality (IAQ) using Artificial Neural Network (ANN)( 2015)
;Shaharil Mad Saad ;Abdul Rahman Mohd SaadMonitoring indoor air quality (IAQ) is deemed important nowadays. A sophisticated IAQ monitoring system which could classify the source influencing the IAQ is definitely going to be very helpful to the users. Therefore, in this paper, an IAQ monitoring system has been proposed with a newly added feature which enables the system to identify the sources influencing the level of IAQ. In order to achieve this, the data collected has been trained with artificial neural network or ANN—a proven method for pattern recognition. Basically, the proposed system consists of sensor module cloud (SMC), base station and service-oriented client. The SMC contain collections of sensor modules that measure the air quality data and transmit the captured data to base station through wireless network. The IAQ monitoring system is also equipped with IAQ Index and thermal comfort index which could tell the users about the room’s conditions. The results showed that the system is able to measure the level of air quality and successfully classify the sources influencing IAQ in various environments like ambient air, chemical presence, fragrance presence, foods and beverages and human activity.4 15 -
PublicationDevelopment of a scalable testbed for mobile olfaction verification( 2015)
;Retnam VisvanathanThe lack of information on ground truth gas dispersion and experiment verification information has impeded the development of mobile olfaction systems, especially for real-world conditions. In this paper, an integrated testbed for mobile gas sensing experiments is presented. The integrated 3 m × 6 m testbed was built to provide real-time ground truth information for mobile olfaction system development. The testbed consists of a 72-gas-sensor array, namely Large Gas Sensor Array (LGSA), a localization system based on cameras and a wireless communication backbone for robot communication and integration into the testbed system. Furthermore, the data collected from the testbed may be streamed into a simulation environment to expedite development. Calibration results using ethanol have shown that using a large number of gas sensor in the LGSA is feasible and can produce coherent signals when exposed to the same concentrations. The results have shown that the testbed was able to capture the time varying characteristics and the variability of gas plume in a 2 h experiment thus providing time dependent ground truth concentration maps. The authors have demonstrated the ability of the mobile olfaction testbed to monitor, verify and thus, provide insight to gas distribution mapping experiment.4 11 -
PublicationMulti-Stage feature selection based intelligent classifier for classification of incipient stage fire in building( 2016)
;Shaharil Mad SaadIn this study, an early fire detection algorithm has been proposed based on low cost array sensing system, utilising off- the shelf gas sensors, dust particles and ambient sensors such as temperature and humidity sensor. The odour or “smellprint” emanated from various fire sources and building construction materials at early stage are measured. For this purpose, odour profile data from five common fire sources and three common building construction materials were used to develop the classification model. Normalised feature extractions of the smell print data were performed before subjected to prediction classifier. These features represent the odour signals in the time domain. The obtained features undergo the proposed multi-stage feature selection technique and lastly, further reduced by Principal Component Analysis (PCA), a dimension reduction technique. The hybrid PCA-PNN based approach has been applied on different datasets from in-house developed system and the portable electronic nose unit. Experimental classification results show that the dimension reduction process performed by PCA has improved the classification accuracy and provided high reliability, regardless of ambient temperature and humidity variation, baseline sensor drift, the different gas concentration level and exposure towards different heating temperature range.1 12 -
PublicationIn-Line sorting of Harumanis Mango based on external quality using visible imagingThe conventional method of grading Harumanis mango is time-consuming, costly and affected by human bias. In this research, an in-line system was developed to classify Harumanis mango using computer vision. The system was able to identify the irregularity of mango shape and its estimated mass. A group of images of mangoes of different size and shape was used as database set. Some important features such as length, height, centroid and parameter were extracted from each image. Fourier descriptor and size-shape parameters were used to describe the mango shape while the disk method was used to estimate the mass of the mango. Four features have been selected by stepwise discriminant analysis which was effective in sorting regular and misshapen mango. The volume from water displacement method was compared with the volume estimated by image processing using paired t-test and Bland-Altman method. The result between both measurements was not significantly different (P > 0.05). The average correct classification for shape classification was 98% for a training set composed of 180 mangoes. The data was validated with another testing set consist of 140 mangoes which have the success rate of 92%. The same set was used for evaluating the performance of mass estimation. The average success rate of the classification for grading based on its mass was 94%. The results indicate that the in-line sorting system using machine vision has a great potential in automatic fruit sorting according to its shape and mass.
4 11 -
PublicationPollutant recognition based on supervised machine learning for Indoor air quality monitoring systems( 2017)
;Shaharil Mad Saad ;Mohd Mat Dzahir ;Mohamed Hussein ;Maziah MohamadZair AhmadIndoor air may be polluted by various types of pollutants which may come from cleaning products, construction activities, perfumes, cigarette smoke, water-damaged building materials and outdoor pollutants. Although these gases are usually safe for humans, they could be hazardous if their amount exceeded certain limits of exposure for human health. A sophisticated indoor air quality (IAQ) monitoring system which could classify the specific type of pollutants is very helpful. This study proposes an enhanced indoor air quality monitoring system (IAQMS) which could recognize the pollutants by utilizing supervised machine learning algorithms: multilayer perceptron (MLP), K-nearest neighbour (KNN) and linear discrimination analysis (LDA). Five sources of indoor air pollutants have been tested: ambient air, combustion activity, presence of chemicals, presence of fragrances and presence of food and beverages. The results showed that the three algorithms successfully classify the five sources of indoor air pollution (IAP) with a classification rate of up to 100 percent. An MLP classifier with a model structure of 9-3-5 has been chosen to be embedded into the IAQMS. The system has also been tested with all sources of IAP presented together. The result shows that the system is able to classify when single and two mixed sources are presented together. However, when more than two sources of IAP are presented at the same period, the system will classify the sources as ‘unknown’, because the system cannot recognize the input of the new pattern. -
PublicationA study on volatile organic compounds emitted by in-vitro lung cancer cultured cells using gas sensor array and SPME-GCMS( 2018)
;Reena Thriumani ;Yumi Zuhanis Has-Yun Hashim ;Amanina Iymia Jeffree ;Khaled Mohamed Helmy ;Mohammad Iqbal OmarKrishna C. PersaudBackground Volatile organic compounds (VOCs) emitted from exhaled breath from human bodies have been proven to be a useful source of information for early lung cancer diagnosis. To date, there are still arguable information on the production and origin of significant VOCs of cancer cells. Thus, this study aims to conduct in-vitro experiments involving related cell lines to verify the capability of VOCs in providing information of the cells. Method The performances of e-nose technology with different statistical methods to determine the best classifier were conducted and discussed. The gas sensor study has been complemented using solid phase micro-extraction-gas chromatography mass spectrometry. For this purpose, the lung cancer cells (A549 and Calu-3) and control cell lines, breast cancer cell (MCF7) and non-cancerous lung cell (WI38VA13) were cultured in growth medium. Results This study successfully provided a list of possible volatile organic compounds that can be specific biomarkers for lung cancer, even at the 24th hour of cell growth. Also, the Linear Discriminant Analysis-based One versus All-Support Vector Machine classifier, is able to produce high performance in distinguishing lung cancer from breast cancer cells and normal lung cells. Conclusion The findings in this work conclude that the specific VOC released from the cancer cells can act as the odour signature and potentially to be used as non-invasive screening of lung cancer using gas array sensor devices.6 11