Journal Articles
Permanent URI for this collection
Browse
Browsing Journal Articles by Author "Ahmad Shukri Yahaya"
Results Per Page
Sort Options
-
PublicationPerformance of Bayesian Model Averaging (BMA) for short-term prediction of PM10 concentration in the Peninsular Malaysia(MDPI, 2023)
; ;Hazrul Abdul Hamid ;Ahmad Shukri Yahaya ;Ahmad Zia Ul-Saufie ; ;Ain Nihla Kamarudzaman ;György DeákIn preparation for the Fourth Industrial Revolution (IR 4.0) in Malaysia, the government envisions a path to environmental sustainability and an improvement in air quality. Air quality measurements were initiated in different backgrounds including urban, suburban, industrial and rural to detect any significant changes in air quality parameters. Due to the dynamic nature of the weather, geographical location and anthropogenic sources, many uncertainties must be considered when dealing with air pollution data. In recent years, the Bayesian approach to fitting statistical models has gained more popularity due to its alternative modelling strategy that accounted for uncertainties for all air quality parameters. Therefore, this study aims to evaluate the performance of Bayesian Model Averaging (BMA) in predicting the next-day PM10 concentration in Peninsular Malaysia. A case study utilized seventeen years’ worth of air quality monitoring data from nine (9) monitoring stations located in Peninsular Malaysia, using eight air quality parameters, i.e., PM10, NO2, SO2, CO, O3, temperature, relative humidity and wind speed. The performances of the next-day PM10 prediction were calculated using five models’ performance evaluators, namely Coefficient of Determination (R2), Index of Agreement (IA), Kling-Gupta efficiency (KGE), Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE). The BMA models indicate that relative humidity, wind speed and PM10 contributed the most to the prediction model for the majority of stations with (R2 = 0.752 at Pasir Gudang monitoring station), (R2 = 0.749 at Larkin monitoring station), (R2 = 0.703 at Kota Bharu monitoring station), (R2 = 0.696 at Kangar monitoring station) and (R2 = 0.692 at Jerantut monitoring station), respectively. Furthermore, the BMA models demonstrated a good prediction model performance, with IA ranging from 0.84 to 0.91, R2 ranging from 0.64 to 0.75 and KGE ranging from 0.61 to 0.74 for all monitoring stations. According to the results of the investigation, BMA should be utilised in research and forecasting operations pertaining to environmental issues such as air pollution. From this study, BMA is recommended as one of the prediction tools for forecasting air pollution concentration, especially particulate matter level. -
PublicationShort-term predictions of PM₁₀ using Bayesian Regression Models(EDP Sciences, 2023)
; ;Hazrul Abdul Hamid ;Ahmad Shukri Yahaya ;Holban ElenaOne of the air pollutants that poses the greatest threat to human health is PM10. The objectives of this study are to develop a prediction model for PM10. The Multiple Linear Regression (MLR) and Bayesian Regression (BRM) models were constructed to forecast the following dayâ s (Day 1) and next two daysâ (Day 2) PM10 concentration. To choose the optimal model, the performance metrics (NAE, RMSE, PA, IA, and R2) are applied to each model. Jerantut, Nilai, Shah Alam, and Klang were chosen as monitoring sites. Data from the Department of Environment Malaysia (DOE) was utilised as a case study for five years, with seven parameters (PM10, temperature, relative humidity, NO2, SO2, CO, and O3) chosen. According to the findings, the key factors responsible for the unhealthy levels of air quality at the Klang station include carbon monoxide (CO), nitrogen dioxide (NO2), sulphur dioxide (SO2), and ozone (O3) from industrial and maritime activities, which are thought to influence PM10 concentrations in the area. When compared to MLR models, the results demonstrate that BRM are the best model for predicting the next day and next two days PM10 concentration at all locations.7 1