Options
Wan Mohd Khairy Adly Wan Zaimi
Preferred name
Wan Mohd Khairy Adly Wan Zaimi
Official Name
Wan Mohd Khairy Adly, Wan Zaimi
Alternative Name
Wan Mohd Khairy Adly, Wan Zaimi
Zaimi, Wan Mohd Khairy Adly Wan
Zaimi, Khairy
Main Affiliation
Scopus Author ID
55252803400
Researcher ID
AAS-2819-2020
Now showing
1 - 10 of 17
-
PublicationUnsteady three-dimensional free convection flow near the stagnation point over a general curved isothermal surface in a nanofluid( 2020-01-01)
;Admon M.A.This study deals with an unsteady three-dimensional free convection flow near the stagnation point region over a general curved isothermal surface placed in a nanofluid. Nanofluids are great scientific interest because these new thermal transport phenomena surpass the fundamental limits of conventional macroscopic theories of suspensions. Since the heat and mass transfer are very extensive in the industry, the unsteady three-dimensional body near stagnation point can give a significant impact on the heat transfer process. The main objective of the present study is to investigate the effects of some governing parameters on the skin friction coefficients, local Nusselt and local sheerwood numbers as well as related profiles of unsteady free convection in a nanofluid. The momentum equations in x-and y-directions, energy balance equation, and nanoparticle concentration equation are reduced to a set of four fully-coupled nonlinear differential equations under appropriate similarity transformations. The well-known technique Keller-box method is used numerically for different values of governing parameters entering these equations. Further, the present results have been compared with the previous published results for a particular case and the comparisons are found to be in good agreement. The skin friction, local Nusselt number and Sherwood number is increases with an increase in curvature parameter. Rising values of the Lewis number and Brownian motion parameter has enhanced the flow while rising values of the buoyancy and thermophoresis parameter will decelerate the flow. The temperature profile is increases when Brownian motion, buoyancy and thermophoresis parameter increases and concentration profile increase with an increases in buoyancy and thermophoresis parameter. -
PublicationStagnation point flow of williamson nanofluid towards a permeable stretching/shrinking sheet with a partial slip( 2020-01-01)
;Khan A.A.Ying T.Y.The Williamson stagnation nanofluid flow over a stretching/shrinking surface with active and passive control are numerically studied. The main focus of the present study is to investigate the impacts of partial slip and suction at the boundary on the velocity, temperature, and nanoparticle volume fraction profiles and heat transfer characteristics. It is crucial to analyze the fluid flow and heat transfer problems with the inclusion of partial slip and suction effects due to an extensive variety of applications in the industry. The governing partial differential equations are reduced to a set of coupled nonlinear ordinary differential equation systems using nondimensional variables and then it is solved using the boundary value problem solver (bvp4c) in MATLAB. Results show that both velocity and nanoparticle volume fraction increase as the suction parameter increases while the temperature acts in the opposite manner. The magnitude of the reduced skin friction coefficient, the reduced Nusselt number and the reduced Sherwood number are notably increased for the first solution with the increasing suction parameter. It is seen that the nanofluid velocity increases as the partial slip parameter increases whereas the temperature and nanoparticle volume fraction of the nanofluid are decreased. As partial slip parameter enhanced, the reduced skin friction coefficient has decreased while the magnitude of both the local Nusselt number and the local Sherwood number are increasing. Dual solutions exist up to a certain range of the stretching/shrinking parameter in the shrinking flow region. The critical values of stretching/shrinking parameter increases with the increasing in suction and partial slip effect strength suggest that both parameter widens the range of dual solutions exist. Physically, the increment of the suction and slip effects has delayed the boundary layer separation. The first solution is found to be stable and physically applicable but the second solution is not based on the literature for the similar problem presented by researchers. -
PublicationUnsteady MHD Stagnation Point Flow of Al2O3-Cu/H2O Hybrid Nanofluid Past a Convectively Heated Permeable Stretching/Shrinking Sheet with Suction/Injection( 2022-01-01)
;Khan A.A.Ying T.Y.The numerical investigation of unsteady magnetohydrodynamic (MHD) stagnation point flow of Al2O3-Cu/H2O hybrid nanofluid past a convectively heated permeable stretching/shrinking sheet with suction/injection effect is underlined. The characteristic of MHD and boundary condition with suction/injection has received a lot of consideration due to its across-the-board application in mechanical and chemical engineering. The governing continuity, momentum and energy equations are transformed into a system of nonlinear ordinary differential equations using similarity transformation, which is then solved using the bvp4c routine. Numerical results are obtained for the skin friction coefficient, local Nusselt number as well as the velocity and temperature profiles for certain values of the governing parameters, namely suction/injection parameter, copper nanoparticle volume fraction parameter and MHD parameter. Results showed that both velocity profile and temperature increase as the suction/injection parameter γ increases for the first solution and decreases for the second solution. Similarly, when increase the value of MHD parameter M, the velocity and temperature profiles are decreases for both solutions. The magnitude of the reduced skin friction coefficient and the local Nusselt number are notably increased for the first solution with increasing values of the suction/injection and MHD parameters. Finding also revealed that the skin friction coefficient is intensified in conjunction with the local Nussel number by adding up the copper nanoparticle volume fraction. In general, dual solutions are found to exist to a particular extent of the stretching/shrinking sheet. -
PublicationFlow and heat transfer of a nanofluid through a porous medium due to stretching/shrinking sheet with suction, magnetic field and thermal radiation( 2023-09-01)
;Yashkun U. ;Sufahani S.F. ;Eid M.R.Ferdows M.This study investigates the suction and magnetic field effects on the two-dimensional nanofluid flow through a stretching/shrinking sheet at the stagnation point in the porous medium with thermal radiation. The governing partial differential equations (PDEs) are converted into ordinary differential equations (ODEs) using the similarity transformation. The resulting ODEs are then solved numerically by using the bvp4c solver in MATLAB software. It was found that dual solutions exist for the shrinking parameter values up to a certain range. The numerical results obtained are compared, and the comparison showed a good agreement with the existing results in the literature. The governing parameters’ effect on the velocity, temperature and nanoparticle fraction fields as well as the skin friction coefficient, the local Nusselt number and the Sherwood number are represented graphically and analyzed. The variation of the velocity, temperature and concentration increase with the increase in the suction and magnetic field parameters. It seems that the thermal radiation effect has increased the local Sherwood number while the local Nusselt number is reduced with it. -
PublicationTwo-Dimensional Magnetized Mixed Convection Hybrid Nanofluid Over a Vertical Exponentially Shrinking Sheet by Thermal Radiation, Joule Heating, Velocity and Thermal Slip Conditions( 2022-01-01)
;Asghar A. ;Ying T.Y.Hybrid nanofluid is an improved kind of nanofluid that typically utilized to enhance the thermal efficiency in fluid flow regimes. It has a wide range of real-world applications. This opened up many new prospects to further investigate the two-dimensional hybrid nanofluid under different body geometries and physical parameters. A numerical study of a two-dimensional magnetized mixed convection hybrid nanofluid flow over a vertical exponentially shrinking sheet is considered in this paper. The main objective of this current study is to examine the influences of volume fraction of copper, mixed convection, and radiation on the reduced skin friction and reduced heat transfer against the effect of suction. Besides, the influences of radiation, volume fraction of alumina, velocity slip, thermal slip, magnetic parameter, and Eckert number on the velocity and temperature profiles are also considered in this paper. The governing system of partial differential equations (PDEs) is transformed into a system of nonlinear ordinary differential equations (ODEs) through exponential similarity variables. Then, the bvp4c solver for MATLAB is used to solve the transformed nonlinear ODEs. Numerous significant results are being observed. As the quantity of mixed convection was raised, the reduced skin friction improved in both solutions, and reduced heat transfer increased in the second solution but with no variation found in the first solution. Besides, the temperature profile grew when the volume fraction of alumina, radiation, magnetic parameter, and Eckert number were raised in both solutions. In terms of heat transfer rate, when the amount of the velocity slip parameter was increased, temperature reduced in the first solution but increased in the second solution. Whilst temperature dropped in both solutions as the thermal slip parameter was enhanced. In conclusion, the addition of hybrid nanoparticles boosted the heat transmission rate. In the assisting flow condition, dual solutions exist when the suction parameter value is greater or equal to its critical point. However, no fluid flow is conceivable when the indicated value is less than this critical point. -
PublicationTwo-Dimensional Mixed Convection and Radiative Al2O3-Cu/H2O Hybrid Nanofluid Flow over a Vertical Exponentially Shrinking Sheet with Partial Slip Conditions( 2022-03-01)
;Asghar A. ;Ying T.Y.Hybrid nanofluid is considered a modern and improvised form of nanofluid which usually used to enhance the performance of heat transfer in fluid flow systems. Previous studies found hybrid nanofluid offered a wide range of applications and this opened up numerous new opportunities to further explore the unknown behaviour of hybrid nanofluid under different body geometries and physical parameters. This paper numerically studied a two-dimensional mixed convection and radiative Al2O3-Cu/H2O hybrid nanofluid flow over a vertical exponentially shrinking sheet with partial slip conditions. The main objective is to investigate the effect of mixed convection and radiation on the velocity and temperature profiles, as well as the effect of suction on reduced skin friction and reduced heat transfer with respect to solid volume fraction of copper, velocity, and thermal slips. Exponential similarity variables transformed the governing system of partial differential equations into a system of ordinary differential equations which is solved via MATLAB’s bvp4c solver. Outcomes showed that the value of the reduced heat transfer upsurges in the first solution but declines in the second solution when the velocity slip rises. The reduced heat transfer decreases in both dual solutions when thermal slip is enhanced. As the intensity of thermal slip increases, the reduced skin friction rises in the first solution and decreases in the second. As the mixed convection parameter increases, no obvious variation is noticed in the temperature distribution within the first solution, but increasing trend is observed within the second solution. An increment in the temperature distribution also observed within the dual solutions as the thermal radiation parameter increases. In summary, findings from this study are particularly useful to understand various behaviour of Al2O3-Cu/H2O hybrid nanofluid under the influence of mixed convection, radiation, and partial slip conditions when it flows over a vertical exponential shrinking sheet. -
PublicationMhd mixed convection flow and heat transfer of a dual stratified micropolar fluid over a vertical stretching/ shrinking sheet with suction, chemical reaction and heat source( 2020-01-01)
;Khan A.A. ;Sufahani S.F.Ferdows M.The purpose of this study was to investigate the magnetohydrodynamic (MHD) mixed convection flow and heat transfer of a dual stratified micropolar fluid over a vertical permeable stretching/ shrinking sheet with chemical reaction and heat source. The governing nonlinear partial differential equations are reduced into a system of nonlinear ordinary differential equations using an appropriate similarity transformation. Then, the obtained ordinary differential equations are solved numerically using the boundary value problem solver (bvp4c) in MATLAB software. The numerical results are tabulated and plotted for the heat transfer characteristics, namely, the skin friction coefficient, the local Nusselt number, the local Sherwood number as well as the velocity, temperature and concentration profiles for some values of the governing parameters. The present numerical results also have been compared with the previous reported results for a particular case and the comparisons are found to be in an excellent agreement. The results indicate that the skin friction coefficient and the local Nusselt number increase with chemical reaction and heat source. The magnitude of the local Sherwood number increases with the increasing of chemical reaction parameter. However, the magnitude of the local Sherwood number decreases with heat source effect. -
PublicationStability analysis and dual solutions of time-dependent stagnation-point heat transport of Casson nanofluid by using Tiwari–Das model( 2023-01-01)
;Lanjwani H.B. ;Anwar M.I. ;Ghoto A.A. ;Shehzad S.A.Magnetohydrodynamic (MHD) time-dependent stagnation point flow and heat transfer characteristics of Casson base nanofluid over porous shrinking/stretching sheet with velocity slip and radiations effects is considered. The Tiwari–Das model is incorporated with silver (Ag), gold (Au), and iron (Fe) nanoparticles. The similarity variables are used to transfer the modeled partial differential equations into the system of ordinary differential equations. The shooting technique through Maple software is used to check the effects of different physical parameters used in equations and boundary conditions. The stability analysis at different values of the used parameters is performed due to existence of duality in the solutions. In the results, the second solution is found unstable while first one is physically reliable and stable. Numerically achieved findings of this problems show the skin friction coefficient is decreasing for (Formula presented.) and increasing for (Formula presented.) when the suction rate and nanoparticles volume-fraction are increased. The local Nusselt number is higher against the rising suction parameter and lower for the incremented nanoparticles volume fractions for both cases of (Formula presented.) Comparatively, the thermal conductivity and drag force of Au-nanoparticles is seen greater than Ag and Fe, while Fe greater than Ag in Casson nanofluid flow. The velocity profiles decrease with increase in nanoparticles volume fractions, Casson, suction and velocity slip parameters, while, an increase in unsteady parameter increases velocity profile. Moreover, radiation, nanoparticles volume fractions and magnetic parameters increase the temperature profiles. -
PublicationRadiative Mixed Convection Flow Over a Moving Needle Saturated with Non-Isothermal Hybrid Nanofluid( 2021-12-01)
;Jahan S. ;Ferdows M. ;Shamshuddin M.A steady incompressible boundary layer flow and heat transfer past on a moving thin needle saturated with hybrid nanofluid are investigated with the effects of solar radiation and viscous dissipation. The simulation is also influenced by the effects of thermophoresis and Brownian motion. We consider (Al2O3-Cu-water) as a hybrid nanofluid, where water is the base fluid and alumina and copper are the hybrid nanoparticles. By utilizing the technique of similarity transformations, we transformed the dimensional partial differential equations into dimensionless ordinary differential equations. Using the MAPLE software scheme, the transformed equations have been solved numerically. The graphical representation of different parameters including Mixed convection, Power-law exponent, Buoyancy ratio parameter, Eckert number are illustrated on velocity, temperature, the concentration of nanoparticles profiles and explained in detail. Skin friction coefficient, heat transfer rate, and mass transfer rate are also obtained numerically. With the presence of hybrid nanoparticles, the heat transfer rate is higher in all cases. In the temperature profile, we observed a reduction with the increasing values of the mixed convection parameter. It also revealed that greater values of volume fraction of nanoparticle (Cu) reduce the mass transfer rate but accelerates the heat transfer rate. -
PublicationMHD Flow and Heat Transfer of Double Stratified Micropolar Fluid over a Vertical Permeable Shrinking/Stretching Sheet with Chemical Reaction and Heat Source( 2020-12-01)
;Khan A.A. ;Sufahani S.F.Ferdows M.The present study analyses the magnetohydrodynamic (MHD) flow of a double stratified micropolar fluid across a vertical stretching/shrinking sheet in the presence of suction, chemical reaction, and heat source effects. The governing equations in the form of partial differential equations are transitioned into coupled nonlinear ordinary differential equations by means of similarity transformation. The numerical solutions are obtained with the aid of the boundary value problem bvp4c solver in the MATLAB software. Numerical results have been confirmed with the previous results for a certain case and the comparison is found to be in an excellent agreement. Results for related profiles and heat transfer characteristics are displayed through plots and tabulated for the governing parameters involved. It is found that the reduced skin friction coefficient and the local Nusselt number increase with the increasing chemical reaction and heat source parameters. The rising values of the chemical reaction parameter have increased the magnitude of the local Sherwood number. In contrary, the heat source parameter has the tendency to decrease the magnitude of the local Sherwood number.