Options
Zailani Zainal Abidin
Preferred name
Zailani Zainal Abidin
Official Name
Zailani, Zainal Abidin
Alternative Name
Zailani, Zainal A.
Zailani, Z. A.
Zailani, Zainal Abidin
Main Affiliation
Scopus Author ID
57214460223
Researcher ID
CKM-8563-2022
Now showing
1 - 10 of 23
-
PublicationProgressive tool wear in machining of aluminum alloy: The influence of solid lubricant nanoparticles( 2021-01-01)
;Jaaffar N.S. ;Harun A.Jaafar H.The abstract should summarize the contents of the paper in short terms, i.e. 150–250 words. Aluminum alloy 7075 are used in a variety of applications particularly in automotive and aerospace industry owing to their features of lightweight, high-strength and corrosion resistant properties. However, build up edge (BUE) and material adhesion either on cutting tool or workpiece render these materials difficult to machine. Their machining is associated with rapid tool wear and poor workpiece quality. Cutting fluids are currently the common solution to these problems although there are concerns on their use in terms of health footprint and environmental effects. Thus, new innovations are crucial to enhance the machinability as well as diminishing hazards through encouraging greener machining techniques. In this research, the use of solid lubricants; graphene and hexagonal boron nitride nanoparticles to augment minimum quantity lubricant were researched in macro drilling. Effects of four different machining conditions namely dry, minimum quantity lubricant, minimum quantity lubricant dispersed with graphene and hexagonal boron nitride nanoparticles were investigated on their progressive tool wear behavior. A notable finding is that the nanoparticles of solid lubricants had a significant factor in improving machinability of aluminum alloy 7075 compared to dry and minimum quantity lubricant alone. It was observed that the use of minimum quantity lubricant dispersed with hexagonal boron nitride demonstrated desirable tool life enhancement, tool wear reduction and number of holes drilled increment. -
PublicationCrack Detection on Sheared-Edge of Ultra-High Strength Steel Sheet by Using Acid Immersion( 2020-07-09)
;Azzmer S. ;Jaafar H. ;Tajul L. ;Sulaiman M.H.In trimming of ultra-high strength steel (UHSS) sheet, the high strength of the sheet usually results in large fracture and low burnish surfaces on the sheared-edge. For metal stamping industries, large fracture surfaces are unwanted, as it not only deteriorates sheared-edge quality but also leads to delayed-crack. In this study, crack detection by using acid immersion on the sheared-edge of ultra-high strength steel sheet caused by the trimming process was investigated. The ultra-high strength steel sheet of JSC780YN, JSC980YN, and JSC1180YN having different strengths were trimmed and immersed in 35% hydrochloric acid under a controlled time interval. The steel sheet with higher strength was found to produce larger fracture surface after trimming, i.e. more than 50% of the entire sheared-edge is fracture surface. Besides, the larger fracture surface of the steel sheet results in higher crack exposure and higher crack propagation, which in the long run, it can cause failure to the part manufactured using UHSS. -
PublicationExperimental investigation on the microdefects formation due to the electrical discharge coating process: A fractional factorial design( 2024-03-07)Zain M.Z.M.Electrical discharge coating (EDC) is a well-known technique among researchers for modification of metallic surfaces. This process is capable of producing a hard coating layer, biocompatible and high corrosion resistance at low operating cost. Unfortunately, the process develops unfavourable microcracks and porosity on the substrate surface attributed by heat generation. Thus, in this study, the effect of several parameters to the microdefects' formation was investigated through an experimental work based on fractional factorial design. This work was conducted on a nickel-titanium (NiTi) shape memory alloy by varying the EDC parameters, namely; polarity, discharge duration, peak current, pulse interval, gap voltage and additive Ti nano powder concentration in deionized water (DI water). ANOVA results exhibited that the discharge duration has dominated the microcracks and porosity fraction on the substrate surface due to the impact of high intensity of discharge energy. Although, the Ti nano powder mixed in the DI water had capability to reduce the microcracks formation, the porosity fraction during at high gap voltage setting was elevated with the Ti nano powder mixed.
-
PublicationEffect of milling parameter and fiber pull-out on machinability kenaf fiber reinforced plastic composite materials( 2021-01-01)
;Azmi H. ;Haron C.H.C. ;Lih T.C. ;Yuzairi A.R.Sanusi H.Milling surface quality normally depends on the value of surface roughness and delamination factor. The milling parameters, which are cutting tool geometry and fiber pull-out, are the major factors affecting the value of surface roughness and delamination factor in milling kenaf fiber reinforced plastic composite. The objectives of this research are to study the effects of milling parameters, to evaluate the fiber behavior, and to determine the optimum conditions for a range of milling parameters in order to minimize surface roughness (Ra) and delamination factor (Fd) using response surface methodology (RSM). RSM with central composite design (CCD) approach was used to conduct a non-sequential experiment and analyzed the data from the measurements of surface roughness and delamination factor. This study focused on the investigation of relationship between the milling parameters and their effects on kenaf reinforced plastic composite materials during cutting process. Kenaf composite panels were fabricated using vacuum assisted resin transfer molding (VARTM) method that was pressurized below 15 psi using a vacuum pressure. The results showed that the optimum parameters for better surface roughness and delamination factor were cutting speed of 16 Vm/min, feed rate of 0.1 mm/tooth, and depth of cut of 2.0 mm. The feed rate and cutting speed are expected to be the biggest contributors to surface roughness and delamination factor. Finally, different cutting tool geometries also influenced the fiber pull-out that affect surface roughness and delamination factor in milling kenaf fiber reinforce plastic composite materials. -
PublicationImplementation of PID Controller for Solar Tracking System( 2021-01-01)
;Zakaria S. ;Ong J.Q. ;Engku Ariff E.A.R.Proportional integral derivative (PID) controllers are widely used in industrial processes cue to their simplicity and effectiveness for linear and nonlinear systems. Solar tracking system is one of the most direct approaches adopted to harvest more solar energy from photovoltaic (PV) system compared to stationary solar system. Hence, the PV panels able to receive maximum sunlight and generate more energy. Arduino based prototype dual axis (Azimuth-Altitude) solar tracking system is constructed with the implementation of PID controller. The performance of dual axis tracking system and stationary solar system are compared and discussed. Types of tuning methods for PID constant will be determine with use of Arduino IDE. Comparative results depicted that performance in terms of current, voltage and power value. According to results, dual axis solar tracking system with implement of PID controller is shown better performance compare to stationary solar system. -
PublicationEffect of tool engagement on cutting force for different step over in milling aisi p20 tool steel( 2021-01-01)
;Mohamed N.I. ;Saravanan R. ;Azmi H.In mold production, end milling with tool path strategies is required for the process known as pocket operation. Different step overs involve depending on the type of tool path strategy used. Thus, different engagement will occur and leads to fluctuation of cutting force due to different step over during the process. However, most of study before focused on the effect of cutting speed, feed rate and depth of cut only in machining AISI P20. Thus, in this study, step over will be considered as one of the factor to improve machining force. The objective of this study are to evaluate the effect of cutting parameters and step over on cutting force and to study the behavior of cutting force for different tool engagement. A series of milling operation was carried out by varying cutting speed and feed rate. However, the depth of cut was set to 0.25 mm for each run. Step over with 100%, 75% and 50% were selected in this study. L27 Taguchi and S/N ratio were used to determine the significant factors that influence the result. Within the range of cutting parameters selected, feed rate were found to be the most significant parameters that influence cutting force. The highest cutting force found for 100% step over compared to 75% and 50% step over. According to the result, cutting force increased as the step over increased. In can be concluded that, step over is one of the important cutting parameter that affected machining output. -
PublicationMachinability of nickel-titanium shape memory alloys under dry and chilled air cutting conditions( 2023-06-01)Mativenga P.T.Nickel-titanium (NiTi) shape memory alloys (SMAs) undergo phase transformation between austenitic and martensitic phases in response to applied thermal or mechanical stress, resulting in unique properties and applications. However, machinability often becomes challenging due to property and temperature sensitivity attributes. The use of chilled air to influence machinability in macro-milling was investigated in this study. Other than that, differential scanning calorimetry (DSC) was used to determine the temperature of phase transformation. The results showed that milling with chilled air and minimal lubrication significantly improved machining performance by reducing tool wear and burr formation. Moreover, surface quality has also improved significantly. A notable discovery is that the machining process can change the critical conditions for phase transition, enabling new performance capability of tuning material hysteresis.
-
PublicationMachinability of Nickel Titanium Shape Memory Alloys: A Review( 2021-01-01)
;Noor N.Z.M.Shape memory alloys of Nickel Titanium (NiTi) reveal a reversible diffusionless transition between phases, resulting in unique properties and applications. It is widely used in varieties of products; especially in aerospace and medical fields. Yet, these alloys known as hard-to-machine materials owing to their properties of unconventional stress-strain behaviour, high work strain hardening and high ductility. That’s why their machinability is a major issue. The common drawbacks are serious burr formation, rapid tool wear, poor surface quality and high cutting force. This paper puts forward any possibilities to enhance the machining performance through paper reviews from previous researchers. A notable finding is that the machinability issues can be reduced or lessened by changing the cutting parameters and cutting conditions in order to improve the machinability of NiTi alloys.1 -
PublicationMachining of Cobalt Chromium Molybdenum (CoCrMo) Alloys: A Review( 2021-01-01)
;Saravanan R. ;Murad N.M.Cobalt chromium molybdenum (CoCrMo) alloys are not only broadly applied in engineering fields but also in manufacturing of surgical implants components and medical devices due to its outstanding properties of wear resistance and great biocompatibility as demanding in the vivo environment. However, these alloys classified as difficult to cut materials as it presents several characteristics such as high hardness, low thermal conductivity, high wear resistance and strain hardening which contribute to its poor machinability. Although these CoCrMo alloys are theoretically similar to titanium alloy in terms of properties but the studies on machining of CoCrMo alloys still insufficient. This paper provides a review on machining aspects of cobalt chromium molybdenum (CoCrMo) alloys including the properties and machinability, cutting fluid methods and tool material selection for these alloys. -
PublicationChilled Air System and Size Effect in Micro-milling of Nickel−Titanium Shape Memory Alloys( 2020-03-01)
;Tarisai Mativenga P.Harrison G.Although Nickel-Titanium Shape Memory Alloys (NiTi SMAs) are used in a variety of applications due to their shape memory and superelasticity properties, their features of high ductility, temperature sensitivity, and strong work hardening render these materials difficult to machine. The viability of a new approach in improving the machinability through temperature control using chilled air system application was investigated. Differential scanning calorimetry was used to characterise material response to thermal loads. Microstructure phase identification was evaluated with X-ray diffraction. Micro-milling tests were performed using chilled air system and benchmarked to dry cutting and the use of minimum quantity lubricant (MQL). To augment lubrication, chilled air was also applied concurrently with MQL. Results indicated that the application of chilled air reduced cutting temperature and minimised burr height, while their simultaneous application with MQL further improved the machinability. Further investigation was conducted to explore the influence of the ploughing mechanism on machining performance and product quality. The results pointed to higher feed per tooth producing better outcomes. This paper puts forward a new hypothesis that the machinability could be improved by inhibiting or locking in phase transformation through temperature control, and optimising chip thickness, one of the principal parameters of size effect.