Now showing 1 - 10 of 23
  • Publication
    Effect of Inclined Angle in Trimming of Ultra-high Strength Steel Sheets Having Inclined and Curved Shapes
    Trimming the scrap portion of ultra-high strength steel (UHSS) components poses a significant challenge due to the inherent high strength and hardness characteristics of the material. For UHSS components with a higher geometric complexity such consisting of inclined and curved sections, sharp tilt, and small bend radius, the large trimming load results in poor sheared quality and shape defects, which commonly happen in these areas. This research investigated the effects of applying a small inclination angle to the punch in the trimming of the UHSS parts having an inclined and curved shape. The inclined punch was modified to four sets of different degrees of inclination i.e., 1°, 3°, 5°, and 10°. A comparative analysis of the trimming load, trimming energy, sheared edge quality and shape defects was conducted between these modified punches and the normal punch for their effectiveness in the trimming operation. Results showed that the application of inclination angle significantly decreased the trimming load, reduced the trimming energy, and improved the sheared edge surface quality, as well as prevented the shape defects at the inclined and curved zones as compared to the outcomes produced when trimming using the normal punch. The study suggested that the change to the punch geometry is an effective option to improve the performance of the process as well as the quality of the part, particularly in trimming the high-strength components having complex shapes.
  • Publication
    Enhancement on the surface quality in machining of aluminum alloy using graphene nanoparticles
    Aluminum alloys are popularly used in the aerospace industry due to their lightweight and high strength-to-weight ratio. However, cutting these alloys can result in various machinability issues such as tool wear, built-up edges, and material adherence on the cutting tool. To address these issues and minimize the use of lubricants, researchers are exploring alternative greener techniques. One such technique is the use of nano lubrication technology. In this research, the consequence of three cutting techniques - dry cutting, minimum quantity lubrication (MQL), and MQL dispersed with graphene nanoparticles - was experimentally studied to assess their impact on hole quality, surface roughness, and the number of holes drilled. The findings showed that the addition of graphene nanoparticles improved roughness quality, reduced tool wear, and increased the number of holes drilled, but had less impact on hole accuracy. This study highlights the importance of nanoparticles in enhancing the machinability of aluminum alloys and offers promising avenues for future research in this area.
  • Publication
    Progressive tool wear in machining of aluminum alloy: The influence of solid lubricant nanoparticles
    ( 2021-01-01) ;
    Jaaffar N.S.
    ;
    ;
    Harun A.
    ;
    Jaafar H.
    The abstract should summarize the contents of the paper in short terms, i.e. 150–250 words. Aluminum alloy 7075 are used in a variety of applications particularly in automotive and aerospace industry owing to their features of lightweight, high-strength and corrosion resistant properties. However, build up edge (BUE) and material adhesion either on cutting tool or workpiece render these materials difficult to machine. Their machining is associated with rapid tool wear and poor workpiece quality. Cutting fluids are currently the common solution to these problems although there are concerns on their use in terms of health footprint and environmental effects. Thus, new innovations are crucial to enhance the machinability as well as diminishing hazards through encouraging greener machining techniques. In this research, the use of solid lubricants; graphene and hexagonal boron nitride nanoparticles to augment minimum quantity lubricant were researched in macro drilling. Effects of four different machining conditions namely dry, minimum quantity lubricant, minimum quantity lubricant dispersed with graphene and hexagonal boron nitride nanoparticles were investigated on their progressive tool wear behavior. A notable finding is that the nanoparticles of solid lubricants had a significant factor in improving machinability of aluminum alloy 7075 compared to dry and minimum quantity lubricant alone. It was observed that the use of minimum quantity lubricant dispersed with hexagonal boron nitride demonstrated desirable tool life enhancement, tool wear reduction and number of holes drilled increment.
  • Publication
    Effect of cutting environment and swept angle selection in milling operation
    ( 2021-12-01) ;
    Rusli N.S.N.
    ;
    Cutting fluids are frequently aimed to enhance machinability through cooling, lubricating and flushing actions. However, their use in machining creates major concerns in terms of health footprint and environmental effects throughout their lifecycle. Alternative methods, such as dry cutting and minimum quantity lubrication, were used to mitigate these issues. This research also will investigate the effect of swept angle selection, 30% and 60% of tool diameter step over under different cutting conditions during milling of aluminium alloy material. Their impact on tool wear, surface roughness, burr and chip formation were compared. Results pointed that the application of lower swept angle in conjunction with minimum quantity lubricant system has significantly reduced tool wear, decreased burr and chip formation, as well as improved surface quality as compared to dry machining. The work clearly shows how the importance of swept angle selection and cutting condition in refining machining performance could improve the machinability of the material.
  • Publication
    Implementation of PID Controller for Solar Tracking System
    ( 2021-01-01)
    Zakaria S.
    ;
    Ong J.Q.
    ;
    Engku Ariff E.A.R.
    ;
    ; ; ;
    Proportional integral derivative (PID) controllers are widely used in industrial processes cue to their simplicity and effectiveness for linear and nonlinear systems. Solar tracking system is one of the most direct approaches adopted to harvest more solar energy from photovoltaic (PV) system compared to stationary solar system. Hence, the PV panels able to receive maximum sunlight and generate more energy. Arduino based prototype dual axis (Azimuth-Altitude) solar tracking system is constructed with the implementation of PID controller. The performance of dual axis tracking system and stationary solar system are compared and discussed. Types of tuning methods for PID constant will be determine with use of Arduino IDE. Comparative results depicted that performance in terms of current, voltage and power value. According to results, dual axis solar tracking system with implement of PID controller is shown better performance compare to stationary solar system.
  • Publication
    Effect of tool engagement on cutting force for different step over in milling aisi p20 tool steel
    ( 2021-01-01) ;
    Mohamed N.I.
    ;
    Saravanan R.
    ;
    Azmi H.
    ;
    ;
    In mold production, end milling with tool path strategies is required for the process known as pocket operation. Different step overs involve depending on the type of tool path strategy used. Thus, different engagement will occur and leads to fluctuation of cutting force due to different step over during the process. However, most of study before focused on the effect of cutting speed, feed rate and depth of cut only in machining AISI P20. Thus, in this study, step over will be considered as one of the factor to improve machining force. The objective of this study are to evaluate the effect of cutting parameters and step over on cutting force and to study the behavior of cutting force for different tool engagement. A series of milling operation was carried out by varying cutting speed and feed rate. However, the depth of cut was set to 0.25 mm for each run. Step over with 100%, 75% and 50% were selected in this study. L27 Taguchi and S/N ratio were used to determine the significant factors that influence the result. Within the range of cutting parameters selected, feed rate were found to be the most significant parameters that influence cutting force. The highest cutting force found for 100% step over compared to 75% and 50% step over. According to the result, cutting force increased as the step over increased. In can be concluded that, step over is one of the important cutting parameter that affected machining output.
  • Publication
    Boron and graphene nanoparticles as solid lubricant in micro milling of nickel titanium shape memory alloys
    ( 2022-01-01) ;
    Mativenga P.T.
    Nickel titanium shape memory alloys (NiTi SMAs) are employed in a number of applications, however they are difficult to machine due to their high ductility, temperature sensitivity, and severe work hardening. Rapid tool wear and poor workpiece quality are inherent with their machining. Thus, new innovations are crucial to enhance their machinability. The usage of graphene and hexagonal boron nitride solid lubricant nanoparticles to enhance minimum quantity lubricant in micro-milling was investigated in this study. Evaluated parameters were ratio of undeformed chip thickness to cutting edge radius, composition of nanoparticles and cutting environment. Analysis of variance was employed to investigate the influence of process parameters and their interactions on flank wear, burr formation, surface roughness and cutting force. Graphene was found to be more effective than boron nitride in terms of reducing flank wear, burr size and cutting forces. Hexagonal boron nitride yielded better surface finish owing to smaller amount and size of nanoparticles. The work clearly shows the important of type and size of nanoparticles in improving machining performance. Additionally, the impact of simultaneously using chilled air and graphene nanoparticles in further improving process performance is reported.
  • Publication
    Investigation on delamination factor (Fd) of kenaf fibre reinforced plastic composite materials under drilling process
    Natural Fibre Reinforced Plastic Composite material that the Kenaf Fibre are used to reinforce to the polymer matrix to improve its mechanical properties. It is environmentally friendly and low cost as compare to non-biodegradable material. It is also widely used in Aerospace, Automotive and Furniture industry. Drilling process plays an important role in fabrication in these industries. However, some defects often occur on the Natural Fibre Reinforced Plastic Composite during drilling process. The major damage is delamination that are found on the surface of the composite in drilling process. This damage reduces the mechanical properties of the composite. Therefore, the objective of this study is to investigate and minimize the delamination by using Response Surface Methodology (RSM). Cutting speed and feed rate are found significant to delamination in this study. The higher the previous researchers investigate the cutting speed with low feed rate, the lower the delamination. Therefore, the conclusion of this study is high cutting speed with low feed rate improve the mechanical quality of composite.
  • Publication
    Machinability of nickel-titanium shape memory alloys under dry and chilled air cutting conditions
    ( 2023-06-01) ;
    Mativenga P.T.
    Nickel-titanium (NiTi) shape memory alloys (SMAs) undergo phase transformation between austenitic and martensitic phases in response to applied thermal or mechanical stress, resulting in unique properties and applications. However, machinability often becomes challenging due to property and temperature sensitivity attributes. The use of chilled air to influence machinability in macro-milling was investigated in this study. Other than that, differential scanning calorimetry (DSC) was used to determine the temperature of phase transformation. The results showed that milling with chilled air and minimal lubrication significantly improved machining performance by reducing tool wear and burr formation. Moreover, surface quality has also improved significantly. A notable discovery is that the machining process can change the critical conditions for phase transition, enabling new performance capability of tuning material hysteresis.
  • Publication
    Improvement on the Surface Quality in Machining of Aluminum Alloy Involving Boron Nitride Nanoparticles
    ( 2021-01-01) ;
    Zaibi N.M.
    ;
    ;
    Harun A.
    ;
    ;
    Zakaria S.
    Aluminum Alloys are used in a variety of applications due to their lightweight, strength-to-weight ratio and relatively ease of fabrication. In aerospace industry, millions of holes drilled annually on airframe structures. Normally, cutting fluids have been used to help reduce friction and heat. However, the use of cutting fluid is one of the major concerns when considering the environmental issues in machining. The disposal of used cutting fluid poses problems to the environment. This research investigates the effect of greener technique; hexagonal Boron Nitride nanoparticles dispersed in oil as compared to dry cutting and oil alone in through hole drilling operation Their impact on tool wear, surface roughness, and holes quality in terms of diameter accuracy, circularity and cylindricity were experimentally studied. Results showed that application of hexagonal Boron Nitride improved surface finish and produced better dimensional hole accuracy. The work clearly shows the important of nanoparticles in improving machinability of this material.