Home
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • ÄŒeÅ¡tina
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • LatvieÅ¡u
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2021
  5. Polylactic Acid (PLA) Bio-Composite Film Reinforced with Nanocrystalline Cellulose from Napier Fibers
 
Options

Polylactic Acid (PLA) Bio-Composite Film Reinforced with Nanocrystalline Cellulose from Napier Fibers

Journal
Lecture Notes in Mechanical Engineering
ISSN
21954356
Date Issued
2021-01-01
Author(s)
Sucinda E.F.
Mohd Shukry Abdul Majid
Universiti Malaysia Perlis
Mohd Ridzuan Mohd Jamir
Universiti Malaysia Perlis
Cheng Ee Meng
Universiti Malaysia Perlis
DOI
10.1007/978-981-16-0866-7_87
Abstract
Napier grass fibre was utilized for the development of biocomposite through nanocrystalline cellulose (NCC). NCC was generated by 64 wt% sulphuric acid in the hydrolysis cycle with 60 min time reaction. Biocomposite in film form has been prepared by mixing Poly (lactic acid) (PLA) and NCC using a method of solvent casting. In manufacturing of biocomposite films, NCC with different composition (0, 3, and 6 wt%) was used. The result of XRD analysis displayed an increase of crystallinity for PLA/NCC film compared to pure PLA film. However, PLA/NCC film with 6 wt% content of NCC (PLA/NCC-6) exhibited the highest percentage of crystallinity (69%). The chemical interaction of the structure between the NCC filler and the polymer matrix was studied using FTIR which confirmed by the presence of hydrogen bonding and the same trend of spectra was observed due to existence of PLA. PLA/NCC-3 demonstrated the lowest water absorption (0.37%) compared to pure PLA and PLA/NCC-6 film.
Funding(s)
Kementerian Pendidikan Malaysia
Subjects
  • Biocomposite film | N...

File(s)
Research repository notification.pdf (4.4 MB)
Views
2
Acquisition Date
Nov 19, 2024
View Details
google-scholar
Downloads
  • About Us
  • Contact Us
  • Policies