Home
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • Čeština
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • Latviešu
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2021
  5. Modelling and evolutionary computation optimization on FDM process for flexural strength using integrated approach RSM and PSO
 
Options

Modelling and evolutionary computation optimization on FDM process for flexural strength using integrated approach RSM and PSO

Journal
Progress in Additive Manufacturing
ISSN
23639512
Date Issued
2021-02-01
Author(s)
Mohd Sazli Saad
Universiti Malaysia Perlis
Azuwir Mohd Nor
Universiti Malaysia Perlis
Mohd Zakimi Zakaria
Universiti Malaysia Perlis
Mohamad Ezral Baharudin
Universiti Malaysia Perlis
Wan Sallha Yusoff
Universiti Malaysia Perlis
DOI
10.1007/s40964-020-00157-z
Abstract
Fused deposition modelling (FDM) is a modern rapid prototyping (RP) technique due to its potential to replicate a concept modelling, prototypes tooling and usable parts of complex structures within a short period of time. However, proper parameter selection is crucial to produce good quality products with reasonable mechanical properties, such as mechanical strength. In this study, four important process parameters, such as layer thickness, printing speed, print temperature and outer shell speed, are considered. These parameters are studied to observe their relationship towards the flexural strength of the polylactic acid (PLA) printed parts. The experimental design is conducted based on the central composite design in response surface methodology (RSM). Statistical analysis is performed using analysis of variance (ANOVA), in which the correlation between input parameters and output response is analysed. Next, the evolutionary algorithm optimisation approach, i.e., particle swarm optimisation (PSO), is applied to optimise the process parameters based on the regression model generated from the ANOVA. Results obtained from the PSO method are experimentally validated and compared with those of the traditional method (i.e., RSM). The flexural strength from experimental validation obtained using PSO exhibits an improvement of approximately 3.8%. The optimum parameters for layer thickness (A), print speed (B), print temperature (C) and outer shell speed (D) of approximately 0.38 mm, 46.58 mm/s, 185.45 °C and 29.59 mm/s result in flexural strength of 96.62 MPa.
Funding(s)
Ministry of Higher Education, Malaysia
Subjects
  • Additive manufacturin...

File(s)
Research repository notification.pdf (4.4 MB)
Views
2
Acquisition Date
Nov 19, 2024
View Details
google-scholar
Downloads
  • About Us
  • Contact Us
  • Policies