The development and design of a spring-type fixture play a critical role in enhancing the precision and efficiency of manufacturing processes that require repetitive assembly or testing. This research focuses on the design, and fabrication of a spring-loaded fixture aimed at improving workpiece positioning, alignment, and clamping accuracy in various industrial applications. By integrating a spring mechanism, the fixture provides adaptive flexibility, enabling consistent pressure and secure holding, thereby minimizing operator-induced errors and increasing production throughput. The study presents a detailed analysis of the fixture's mechanical design, including the selection of materials, and dimensions while maintaining cost-effectiveness. Cutting simulations are conducted using MasterCAM software to assess toolpath accuracy and detect potential collisions, optimizing the fixture’s functionality. The results demonstrate that the spring-type fixture achieves significant improvements in repeatability and precision, particularly in industries such as automotive, aerospace, and electronics. This design contributes to the advancement of fixture technology by offering a solution that enhances both operational consistency and efficiency in high-precision manufacturing environments.