Home
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • ÄŒeÅ¡tina
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • LatvieÅ¡u
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2020
  5. Comparative study of surface temperature of lithium-ion polymer cells at different discharging rates by infrared thermography and thermocouple
 
Options

Comparative study of surface temperature of lithium-ion polymer cells at different discharging rates by infrared thermography and thermocouple

Journal
International Journal of Heat and Mass Transfer
ISSN
00179310
Date Issued
2020-06-01
Author(s)
Rani M.F.H.
Zuradzman Mohamad Razlan
Universiti Malaysia Perlis
Shahriman Abu Bakar
Universiti Malaysia Perlis
Ibrahim Z.
Wan W.K.
DOI
10.1016/j.ijheatmasstransfer.2020.119595
Abstract
The objective of this study was to compare the surface temperature of lithium-ion polymer cells at different discharging rates by infrared thermography and thermocouple measurement. The cells were discharged by using a battery workstation at discharging rates of 2.0 A, 4.0 A, 6.0 A, 8.0 A, and 10.0 A in a controlled testing condition. This study focused on surface temperature distribution, maximum surface temperature, and temperature rise evolution. Higher discharging rate generates more heat in LiPo cells, which causes larger temperature gradient, higher maximum surface temperature, and higher temperature rise. During the discharging process, non-uniformity spatial distribution of LiPo cells was observed. No critical surface temperature was observed when reaching towards the end of discharging process as the surface temperature distribution managed to become spatially uniform. Most of the maximum surface temperatures were spotted at the lower part of the LiPo cells. In addition, the captured infrared (IR) images found that the temperature rises rapidly at higher discharging rates. In comparison, surface temperature measurement by infrared thermography provided higher accuracy than thermocouple. The findings of this study provide evidences in better development of battery thermal management systems with consideration of surface temperature distribution and temperature rise.
Funding(s)
Ministry of Higher Education, Malaysia
Subjects
  • Infrared thermography...

File(s)
Research repository notification.pdf (4.4 MB)
Views
2
Acquisition Date
Nov 19, 2024
View Details
google-scholar
Downloads
  • About Us
  • Contact Us
  • Policies