Home
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • ÄŒeÅ¡tina
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • LatvieÅ¡u
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2020
  5. Effects of temperature on rice husk silica ash additive for fouling mitigation by polysulfone–RHS ash mixed-matrix composite membranes
 
Options

Effects of temperature on rice husk silica ash additive for fouling mitigation by polysulfone–RHS ash mixed-matrix composite membranes

Journal
Polymer Bulletin
ISSN
01700839
Date Issued
2020-08-01
Author(s)
Alias S.S.
Universiti Teknologi Malaysia
Harun Z.
Universiti Tun Hussein Onn Malaysia
Manoh N.
Universiti Tun Hussein Onn Malaysia
Mohd Riduan Jamalludin
Universiti Malaysia Perlis
DOI
10.1007/s00289-019-02950-5
Abstract
Abstract: It has been found that the preparation of green silica based on agricultural crops preserves environmental sustainability. In this study, rice husk silica (RHS) ash was prepared by burning rice husk (RH) at different temperatures (400 and 1200 Â°C). Both types of green RHS ash additives were blended with polysulfone dope, after which membranes were fabricated via phase inversion. The RHS ash that was synthesised at 400 Â°C (RHS400) had an amorphous structure with strong hydrophilic properties, while the composite membrane containing 3 wt% of RHS400 (A3 membrane) achieved the optimum properties of a dense top, an extended sub-layer of continuous smaller finger-like pores and a bottom layer of macrovoids. A satisfactory mean surface roughness, average pore size (1.90 ± 9.50 × 10−2 µm), porosity (40.66 ± 2.03%) and tensile strength (3.27 ± 0.16 MPa) were also obtained. The contact angle (52.5° ± 3.6°) further proved that this membrane was hydrophilic. The elemental and thermal analyses confirmed the presence of Si and O, which correlated with the 12% residual that was contributed by the silica inside the membrane. The optimum properties of the A3 membrane were an increased PWF (154.04 ± 7.70 L m−2 h−1) with the highest rejection of HA (96.00 ± 4.80%) and a fouling mitigation with the lowest internal resistance (6.79 ± 0.34 × 1012 m−1). Graphic abstract: [Figure not available: see fulltext.]
Funding(s)
Universiti Tun Hussein Onn Malaysia
Subjects
  • Amorphous

  • Composite membrane

  • Fouling mitigation

  • Hydrophilic

  • PSf–RHS ash mixed-mat...

  • Water separation

File(s)
Effects of temperature on rice husk silica ash additive for fouling mitigation by polysulfone–RHS ash mixed-matrix composite membranes.pdf (117.55 KB)
  • About Us
  • Contact Us
  • Policies

We collect and process your personal information for the following purposes: Authentication, Preferences, Acknowledgement and Statistics.
To learn more, please read our
privacy policy.

Customize