Home
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • Čeština
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • Latviešu
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Research Output and Publications
  3. Faculty of Chemical Engineering & Technology
  4. Journal Articles
  5. HIERARCHICAL CARBON FIBER-CARBON NANOTUBES BY USING ELECTROSPRAY DEPOSITION METHOD WITH PRESERVED TENSILE PROPERTIES
 
Options

HIERARCHICAL CARBON FIBER-CARBON NANOTUBES BY USING ELECTROSPRAY DEPOSITION METHOD WITH PRESERVED TENSILE PROPERTIES

Journal
Archives of Metallurgy and Materials
ISSN
17333490
Date Issued
2022-01-01
Author(s)
Muhammad Razlan Zakaria
Universiti Malaysia Perlis
Akil H.M.
Mohd Firdaus Omar
Universiti Malaysia Perlis
Mohd. Mustafa Al Bakri Abdullah
Universiti Malaysia Perlis
Shayfull Zamree Abd. Rahim
Universiti Malaysia Perlis
Nabiałek M.
Wysłocki J.J.
DOI
10.24425/amm.2022.141055
Abstract
In this study, the electrospray deposition (esD) method was used to deposit carbon nanotubes (cNT) onto the surfaces of carbon fibers (cF) in order to produce hybrid carbon fiber-carbon nanotubes (cF-cNT) which is rarely reported in the past. extreme high-resolution field emission scanning electron microscopy (XHR-FeseM), high-resolution transmission electron microscopy (HRTeM) and x-ray photoelectron spectroscopy (XPs) were used to analyse the hybrid carbon fiber-carbon nanotube (cF-cNT). The results demonstrated that cNT was successfully and homogenously distributed on the cF surface. Hybrid cF-cNT was then prepared and compared with cF without cNT deposition in terms of their tensile properties. statistically, the tensile strength and the tensile modulus of the hybrid cF-cNT were increased by up to 3% and 25%, respectively, as compared to the cF without cNT deposition. The results indicated that the esD method did not cause any reduction of tensile properties of hybrid cF-cNT. based on this finding, it can be prominently identified some new and significant information of interest to researchers and industrialists working on cF based products.
Funding(s)
Universiti Sains Malaysia
Subjects
  • carbon Fiber | carbon...

File(s)
research repository notification.pdf (4.4 MB)
Views
1
Acquisition Date
Nov 19, 2024
View Details
google-scholar
Downloads
  • About Us
  • Contact Us
  • Policies