Home
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • ÄŒeÅ¡tina
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • LatvieÅ¡u
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2023
  5. A Review on Edge Detection on Osteogenesis Imperfecta (OI) Image using Fuzzy Logic
 
Options

A Review on Edge Detection on Osteogenesis Imperfecta (OI) Image using Fuzzy Logic

Journal
Journal of Physics: Conference Series
ISSN
17426588
Date Issued
2021-11-25
Author(s)
Zaki M.Z.A.A.
Mohd Hanafi Mat Som
Universiti Malaysia Perlis
Yazid H.
Khairul Salleh Basaruddin
Universiti Malaysia Perlis
Shafriza Nisha Basah
Universiti Malaysia Perlis
Ali M.S.A.M.
DOI
10.1088/1742-6596/2071/1/012040
Abstract
Osteogenesis Imperfecta (OI) is a bone disorder that causes bone to be brittle and easy to fracture. The patient suffered from this disease will have poor quality of life. Simulation on the bone fracture risk would help medical doctors to make decision in their diagnosis. Detection of edges from the OI images is very important as it helps radiologist to segmentize cortical and cancellous bone to make a good 3D bone model for analysis. The purpose of this paper is to review the fundamentals of fuzzy logic in edge detection of OI bone as it is yet to be implemented. Several fuzzy logic concepts are reviewed by previous studies which include fuzziness, membership functions and fuzzy sets regarding digital images. The OI images were produced by modalities such as Magnetic Resonance Imaging (MRI), Ultrasound, or Computed Tomography (CT). In summary, researchers from the reviewed papers concluded that fuzzy logic can be implemented to detect edges in noisy clinical images.
File(s)
Research repository notification.pdf (4.4 MB)
Views
2
Acquisition Date
Nov 19, 2024
View Details
google-scholar
Downloads
  • About Us
  • Contact Us
  • Policies