Home
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • ÄŒeÅ¡tina
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • LatvieÅ¡u
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2022
  5. Gold nanogap impedimetric biosensor for precise and selective Ganoderma boninense detection
 
Options

Gold nanogap impedimetric biosensor for precise and selective Ganoderma boninense detection

Journal
3 Biotech
ISSN
2190572X
Date Issued
2022-11-01
Author(s)
Dhahi T.S.
Tijjani Adam
Universiti Malaysia Perlis
Subash Chandra Bose Gopinath
Universiti Malaysia Perlis
Uda Hashim
Universiti Malaysia Perlis
DOI
10.1007/s13205-022-03368-z
Abstract
Ganoderma species are common wood-rotting fungi that cause root and stem rot in most monocots, dicots, and gymnosperms. It influences plantation crops such as oil palm and rubber in Malaysia, but the effects vary greatly within the genus. Because of the complex chemistry of Ganoderma, extracting and identifying the physiologically active chemicals is often time-consuming and necessitates extensive bioassays. This study investigated the specific identification of the most infectious Ganoderma species using a sub-20-nm gold electrode. Three electrodes were created using chemically controlled etching (2, 10, and 20 nm). An AutoCAD mask containing nanogap pad electrodes was used to create a chrome glass surface, which was then translated and built. Following the successful construction of the device, the sensor was evaluated using a combination of conventional photolithography and a size reduction technique to imprint the nanogap design onto the gold surface. Ganoderma boninense target DNA was synthesised and surface-modified to enable interaction at extremely low molecular concentrations. The proposed device has a detection limit of 0.001 mol/L, which is seven times lower than the detection limits of currently available devices. The capacitance, conductivity, and permittivity of complementary, non-complementary, single mismatched, and targeted biomolecules changed during hybridization. This sensor correctly differentiated between all samples. The sensor's performance is further validated by comparing experimental data from the sensor to theoretical data from the sensor's corresponding circuit model. The two data sets are very similar.
Subjects
  • Dielectrode | Electro...

File(s)
Research repository notification.pdf (4.4 MB)
Views
3
Acquisition Date
Nov 19, 2024
View Details
google-scholar
Downloads
  • About Us
  • Contact Us
  • Policies