Home
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • Čeština
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • Latviešu
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2021
  5. A 3.5 GHz hybrid CMOS class E power amplifier with reverse body bias design for 5G applications
 
Options

A 3.5 GHz hybrid CMOS class E power amplifier with reverse body bias design for 5G applications

Journal
AIP Conference Proceedings
ISSN
0094243X
Date Issued
2021-05-03
Author(s)
Ahmad Fariz Hasan
Universiti Malaysia Perlis
Sohiful Anuar Zainol Murad
Universiti Malaysia Perlis
Faizah Abu Bakar
Universiti Malaysia Perlis
DOI
10.1063/5.0044534
Abstract
A 3.5 GHz CMOS power amplifier (PA) using 0.18 μm Silterra process technology for 5G applications is reported. The proposed circuit consists of two stages. In the first stage, a cascade topology is adopted with a reverse body bias technique to obtain high voltage gain and minimize the current to reduce the power consumption. Meanwhile, a class-E is use in the second stage to obtain high efficiency. The simulation results of propose PA indicate that 22.6 dB of peak power gain (S21), 8.2 dBm of saturated power (Psat) and 54.6% of power added efficiency (PAE) is achieve at 3.5 GHz. These results prove that the proposed PA is suitable for low band 5G applications.
Funding(s)
Ministry of Higher Education, Malaysia
File(s)
research repository notification.pdf (4.4 MB)
Views
1
Acquisition Date
Nov 19, 2024
View Details
google-scholar
Downloads
  • About Us
  • Contact Us
  • Policies