Home
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • ÄŒeÅ¡tina
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • LatvieÅ¡u
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2020
  5. Compressive strength and thermal conductivity of metakaolin geopolymers with anisotropic insulations
 
Options

Compressive strength and thermal conductivity of metakaolin geopolymers with anisotropic insulations

Journal
IOP Conference Series: Materials Science and Engineering
ISSN
17578981
Date Issued
2020-03-18
Author(s)
Jaya N.A.
Liew Yun Ming
Universiti Malaysia Perlis
Mohd. Mustafa Al Bakri Abdullah
Universiti Malaysia Perlis
Kamarudin Hussin
Universiti Malaysia Perlis
Heah Cheng Yong
Universiti Malaysia Perlis
Bayuaji R.
Muhammad Faheem Mohd. Tahir
Universiti Malaysia Perlis
DOI
10.1088/1757-899X/743/1/01200
Abstract
This research investigated the properties of thermally insulating geopolymer prepared using waste filler (fibreboard and rubber) to act as anisotropic pore/insulation. The geopolymer matrix was synthesised using metakaolin and an alkaline solution consists of sodium hydroxide solution and sodium silicate mixture. Geopolymers with varying content (0, 3, 5 and 7 layers) of coin-shaped fibreboard and expanded polystyrene are produced to examine the anisotropic insulation effect on the material characteristics. The compressive strength and thermal conductivity were determined experimentally. From the results, it is proved that the use of anisotropic insulations can improve the thermal conductivity and minimizing the reduction of compressive strength. Geopolymer incorporated with fibreboard had better performance in terms of strength while geopolymer incorporated with rubber had better thermal conductivity.
Funding(s)
European Commission
File(s)
research repository notification.pdf (4.4 MB)
Views
1
Acquisition Date
Nov 19, 2024
View Details
google-scholar
Downloads
  • About Us
  • Contact Us
  • Policies